Answer:
Step-by-step explanation:
Composite numbers are positive numbers that have factors, This means that they are divisible by numbers other than 1 and itself provided that number is a factor of the composite number. They possess at the bearest minimum level, a divisor other than 1 and itself. They are a natural number that is expressible as the product of two(or more) numbers other than 1 and itself.
For example:
4 is a composite number because its factors are 1, 2 and 4 which have another divisor apart from 1 and itself (4). That divisor is 2.
We all know that prime numbers are numbers that can be only be divided by 1 and itself.
Therefore, the sum of two composite number, for example:
4 + 6 = 10, We can now see that 10 is never a prime number.
So you have -13, then a number that's somewhere to the right of -13. imagine a number line: the negative values are on the left side of the zero, the positive values are on the right. if you're moving to the RIGHT of -13, that means that the value will be greater than -13, or in other words, -13 will be less than the new value because you moved right.
to find the number 28 units to the right of -13, you simply need to add these two numbers: -13 + 28. you add them because you're moving 28 units in the POSITIVE direction, aka you're going UP, so you want to add. -13 + 28 = 15.
now read the statements your question gave you. C and D are just straight-up false--a positive number is never less than a negative number. those are out immediately. now, the numbers you're working with are -13 and 15, so you can immediately ignore B as an answer choice, but still: A is correct because it shows the correct inequality. -13 is less than the number 28 units to the right of it, that number being positive 15.
Answer:
the thrid one
Step-by-step explanation:
Answer:
62°
Step-by-step explanation:
Complementary angles by definition are two or more angles that add up to 90°. So we must do 90°-62° to get the missing angle which is 62°.
Hope that helped.
Answer:

Step-by-step explanation:
Given



Required
Determine the coordinates of P
The coordinate of a point when divided into ratio is:

Where



This gives:



