1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
neonofarm [45]
3 years ago
9

2865 students participated in a competitive exam. There were 60 rooms in the

Mathematics
1 answer:
sladkih [1.3K]3 years ago
5 0
47 students per room, 45 weren’t in a room
You might be interested in
The graph of f(x)= 3/1+x^2 is shown in the figure to the right. Use the second derivative of f to find the intervals on which f
GenaCL600 [577]

Answer:

Concave Up Interval: (- \infty,\frac{-\sqrt{3} }{3} )U(\frac{\sqrt{3} }{3} , \infty)

Concave Down Interval: (\frac{-\sqrt{3} }{3}, \frac{\sqrt{3} }{3} )

General Formulas and Concepts:

<u>Calculus</u>

Derivative of a Constant is 0.

Basic Power Rule:

  • f(x) = cxⁿ
  • f’(x) = c·nxⁿ⁻¹

Quotient Rule: \frac{d}{dx} [\frac{f(x)}{g(x)} ]=\frac{g(x)f'(x)-g'(x)f(x)}{g^2(x)}

Chain Rule: \frac{d}{dx}[f(g(x))] =f'(g(x)) \cdot g'(x)

Second Derivative Test:

  • Possible Points of Inflection (P.P.I) - Tells us the possible x-values where the graph f(x) may change concavity. Occurs when f"(x) = 0 or undefined
  • Points of Inflection (P.I) - Actual x-values when the graph f(x) changes concavity
  • Number Line Test - Helps us determine whether a P.P.I is a P.I

Step-by-step explanation:

<u>Step 1: Define</u>

f(x)=\frac{3}{1+x^2}

<u>Step 2: Find 2nd Derivative</u>

  1. 1st Derivative [Quotient/Chain/Basic]:                           f'(x)=\frac{0(1+x^2)-2x \cdot 3}{(1+x^2)^2}
  2. Simplify 1st Derivative:                                                           f'(x)=\frac{-6x}{(1+x^2)^2}
  3. 2nd Derivative [Quotient/Chain/Basic]:     f"(x)=\frac{-6(1+x^2)^2-2(1+x^2) \cdot 2x \cdot -6x}{((1+x^2)^2)^2}
  4. Simplify 2nd Derivative:                                                       f"(x)=\frac{6(3x^2-1)}{(1+x^2)^3}

<u>Step 3: Find P.P.I</u>

  • Set f"(x) equal to zero:                    0=\frac{6(3x^2-1)}{(1+x^2)^3}

<em>Case 1: f" is 0</em>

  1. Solve Numerator:                           0=6(3x^2-1)
  2. Divide 6:                                          0=3x^2-1
  3. Add 1:                                              1=3x^2
  4. Divide 3:                                         \frac{1}{3} =x^2
  5. Square root:                                   \pm \sqrt{\frac{1}{3}} =x
  6. Simplify:                                          \pm \frac{\sqrt{3}}{3}  =x
  7. Rewrite:                                          x= \pm \frac{\sqrt{3}}{3}

<em>Case 2: f" is undefined</em>

  1. Solve Denominator:                    0=(1+x^2)^3
  2. Cube root:                                   0=1+x^2
  3. Subtract 1:                                    -1=x^2

We don't go into imaginary numbers when dealing with the 2nd Derivative Test, so our P.P.I is x= \pm \frac{\sqrt{3}}{3} (x ≈ ±0.57735).

<u>Step 4: Number Line Test</u>

<em>See Attachment.</em>

We plug in the test points into the 2nd Derivative and see if the P.P.I is a P.I.

x = -1

  1. Substitute:                    f"(x)=\frac{6(3(-1)^2-1)}{(1+(-1)^2)^3}
  2. Exponents:                   f"(x)=\frac{6(3(1)-1)}{(1+1)^3}
  3. Multiply:                        f"(x)=\frac{6(3-1)}{(1+1)^3}
  4. Subtract/Add:              f"(x)=\frac{6(2)}{(2)^3}
  5. Exponents:                  f"(x)=\frac{6(2)}{8}
  6. Multiply:                       f"(x)=\frac{12}{8}
  7. Simplify:                       f"(x)=\frac{3}{2}

This means that the graph f(x) is concave up before x=\frac{-\sqrt{3}}{3}.

x = 0

  1. Substitute:                    f"(x)=\frac{6(3(0)^2-1)}{(1+(0)^2)^3}
  2. Exponents:                   f"(x)=\frac{6(3(0)-1)}{(1+0)^3}
  3. Multiply:                       f"(x)=\frac{6(0-1)}{(1+0)^3}
  4. Subtract/Add:              f"(x)=\frac{6(-1)}{(1)^3}
  5. Exponents:                  f"(x)=\frac{6(-1)}{1}
  6. Multiply:                       f"(x)=\frac{-6}{1}
  7. Divide:                         f"(x)=-6

This means that the graph f(x) is concave down between  and .

x = 1

  1. Substitute:                    f"(x)=\frac{6(3(1)^2-1)}{(1+(1)^2)^3}
  2. Exponents:                   f"(x)=\frac{6(3(1)-1)}{(1+1)^3}
  3. Multiply:                       f"(x)=\frac{6(3-1)}{(1+1)^3}
  4. Subtract/Add:              f"(x)=\frac{6(2)}{(2)^3}
  5. Exponents:                  f"(x)=\frac{6(2)}{8}
  6. Multiply:                       f"(x)=\frac{12}{8}
  7. Simplify:                       f"(x)=\frac{3}{2}

This means that the graph f(x) is concave up after x=\frac{\sqrt{3}}{3}.

<u>Step 5: Identify</u>

Since f"(x) changes concavity from positive to negative at x=\frac{-\sqrt{3}}{3} and changes from negative to positive at x=\frac{\sqrt{3}}{3}, then we know that the P.P.I's x= \pm \frac{\sqrt{3}}{3} are actually P.I's.

Let's find what actual <em>point </em>on f(x) when the concavity changes.

x=\frac{-\sqrt{3}}{3}

  1. Substitute in P.I into f(x):                    f(\frac{-\sqrt{3}}{3} )=\frac{3}{1+(\frac{-\sqrt{3} }{3} )^2}
  2. Evaluate Exponents:                          f(\frac{-\sqrt{3}}{3} )=\frac{3}{1+\frac{1}{3} }
  3. Add:                                                    f(\frac{-\sqrt{3}}{3} )=\frac{3}{\frac{4}{3} }
  4. Divide:                                                f(\frac{-\sqrt{3}}{3} )=\frac{9}{4}

x=\frac{\sqrt{3}}{3}

  1. Substitute in P.I into f(x):                    f(\frac{\sqrt{3}}{3} )=\frac{3}{1+(\frac{\sqrt{3} }{3} )^2}
  2. Evaluate Exponents:                          f(\frac{\sqrt{3}}{3} )=\frac{3}{1+\frac{1}{3} }
  3. Add:                                                    f(\frac{\sqrt{3}}{3} )=\frac{3}{\frac{4}{3} }
  4. Divide:                                                f(\frac{\sqrt{3}}{3} )=\frac{9}{4}

<u>Step 6: Define Intervals</u>

We know that <em>before </em>f(x) reaches x=\frac{-\sqrt{3}}{3}, the graph is concave up. We used the 2nd Derivative Test to confirm this.

We know that <em>after </em>f(x) passes x=\frac{\sqrt{3}}{3}, the graph is concave up. We used the 2nd Derivative Test to confirm this.

Concave Up Interval: (- \infty,\frac{-\sqrt{3} }{3} )U(\frac{\sqrt{3} }{3} , \infty)

We know that <em>after</em> f(x) <em>passes</em> x=\frac{-\sqrt{3}}{3} , the graph is concave up <em>until</em> x=\frac{\sqrt{3}}{3}. We used the 2nd Derivative Test to confirm this.

Concave Down Interval: (\frac{-\sqrt{3} }{3}, \frac{\sqrt{3} }{3} )

6 0
3 years ago
A-b
Lynna [10]

Answer:

\boxed{\sf d. \ \frac{a}{b}  =  \frac{10}{7}}

Step-by-step explanation:

\sf \implies \dfrac{a - b}{b}  =  \dfrac{3}{7}  \\  \\  \sf \implies  \frac{a}{b}  -  \frac{b}{b}  =  \frac{3}{7}  \\  \\  \sf \implies  \frac{a}{b}  - 1 =  \frac{3}{7}  \\  \\  \sf \implies  \frac{a}{b}  - 1 + 1 =  \frac{3}{7}  + 1 \\  \\  \sf \implies  \frac{a}{b}  =  \frac{3}{7}  + 1 \\  \\  \sf \implies  \frac{a}{b}  =  \frac{3}{7}  +  \frac{7}{7}  \\  \\  \sf \implies  \frac{a}{b}  =  \frac{3 + 7}{7}  \\  \\  \sf \implies  \frac{a}{b}  =  \frac{10}{7}

6 0
3 years ago
Read 2 more answers
Aline's
const2013 [10]

Answer:

y = -1/3 + 7

Step-by-step explanation:

3 0
3 years ago
-5g-3/h-3 + 7g+9/h-3 find the sum
Licemer1 [7]
-5g - 3/h-3 + 7g +9/h-3 = -5g + 7g -3/h-3 + 9/h-3 = 2g + (9 - 3)/(h-3) = 
= 2g + 6/(h-3) if we want it as one fraction it would be:

2g + 6/(h-3) = [2g(h-3) + 6]/(h-3) = \frac{2gh - 6gh + 6}{h-3}
5 0
3 years ago
Sanjay has 3 2/3 yards of yellow ribbon and 5 2/3 yards of blue ribbon. How many yards of ribbon does Sanjay have altogether? A.
Klio2033 [76]
This is exactly like the last question you posted. First you have to change the 3 and 2/3 mixed fraction into a pure fraction. 3 and 2/3 = 9/3 and 2/3 = 11/3 "eleven thirds." You now just need to divide (11 / 3) by (2/3.) (11 / 3) / (2 / 3) = (11 / 3) * (3 / 2) = 11 / 2 = 5 and 1/2 pieces. So if Mae cuts the ribbon into pieces that are 2/3 yard long, Mae will end up with 5 and 1/2 pieces.  Checking our work, 5 pieces would be 5 * (2/3) = 10 / 3 = 3 and 1/3 yard long, leaving us with an extra 1/3 yard of ribbon, which is the "half piece" we got. Depending on the phrasing of the question, the answer could be "Mae makes 5 and a half pieces." or "Mae can make 5 pieces, and will have 1/3 yard of ribbon left over."
the answer is C. 9 1/3
Hope this helps!
6 0
4 years ago
Read 2 more answers
Other questions:
  • Which function is represented by the graph below?
    14·1 answer
  • Factor to find the zeros of the function defined by the quadratic expression.
    14·2 answers
  • Find the equation of the line ​
    5·1 answer
  • Solve log x=3<br><br> Can someone please explain how I would solve this and why?
    5·2 answers
  • Solve for the roots in the following equation. hint: factor both quadratic expressions. (x 4 5x 2 - 36)(2x 2 9x - 5) = 0
    7·2 answers
  • The measure of an angle is 79º. What is the measure of its supplementary angle?
    13·1 answer
  • In the football game, a penalty of -15 yards was applied to a gain of 43 yards. What was the net gain?
    6·1 answer
  • Please help ASAP!! will give brainest answer !
    7·1 answer
  • Show work
    13·1 answer
  • 1. What is the definition of function?
    15·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!