To find the fraction inbetween,
1. Add up the 2 fractions
2 Divide it by 2
Step (!) Add them up:
2/3 + 1 1/3 = 2
Step (2) Divide the answer by 2:
2÷ 2 = 1
Answer: The number between 2/3 and 1 1/3 is 1.
Answer:
<u>Option 2</u>
Step-by-step explanation:
Evaluating the options :
<u>Option 1</u>
- 2 |x - 5| - 4 < -8
- 2 |x - 5| < -4
- |x - 5| < -2
- Empty set as modulus cannot be less than 0
<u>Option 2</u>
- |2x - 1| - 7 < -6
- |2x - 1| < 1
- x < 1
- There is a solution set other than empty set
<u>Option 2</u> is the right answer.
Answer:
the base is 7 units and the height is 3 units
a.
![x^{11}=13\pmod{35}\implies\begin{cases}x^{11}\equiv13\equiv3\pmod5\\x^{11}\equiv13\equiv6\pmod7\end{cases}](https://tex.z-dn.net/?f=x%5E%7B11%7D%3D13%5Cpmod%7B35%7D%5Cimplies%5Cbegin%7Bcases%7Dx%5E%7B11%7D%5Cequiv13%5Cequiv3%5Cpmod5%5C%5Cx%5E%7B11%7D%5Cequiv13%5Cequiv6%5Cpmod7%5Cend%7Bcases%7D)
By Fermat's little theorem, we have
![x^{11}\equiv (x^5)^2x\equiv x^3\equiv3\pmod5](https://tex.z-dn.net/?f=x%5E%7B11%7D%5Cequiv%20%28x%5E5%29%5E2x%5Cequiv%20x%5E3%5Cequiv3%5Cpmod5)
![x^{11}\equiv x^7x^4\equiv x^5\equiv6\pmod 7](https://tex.z-dn.net/?f=x%5E%7B11%7D%5Cequiv%20x%5E7x%5E4%5Cequiv%20x%5E5%5Cequiv6%5Cpmod%207)
5 and 7 are both prime, so
and
. By Euler's theorem, we get
![x^4\equiv1\pmod5\implies x\equiv3^{-1}\equiv2\pmod5](https://tex.z-dn.net/?f=x%5E4%5Cequiv1%5Cpmod5%5Cimplies%20x%5Cequiv3%5E%7B-1%7D%5Cequiv2%5Cpmod5)
![x^6\equiv1\pmod7\impleis x\equiv6^{-1}\equiv6\pmod7](https://tex.z-dn.net/?f=x%5E6%5Cequiv1%5Cpmod7%5Cimpleis%20x%5Cequiv6%5E%7B-1%7D%5Cequiv6%5Cpmod7)
Now we can use the Chinese remainder theorem to solve for
. Start with
![x=2\cdot7+5\cdot6](https://tex.z-dn.net/?f=x%3D2%5Ccdot7%2B5%5Ccdot6)
- Taken mod 5, the second term vanishes and
. Multiply by the inverse of 4 mod 5 (4), then by 2.
![x=2\cdot7\cdot4\cdot2+5\cdot6](https://tex.z-dn.net/?f=x%3D2%5Ccdot7%5Ccdot4%5Ccdot2%2B5%5Ccdot6)
- Taken mod 7, the first term vanishes and
. Multiply by the inverse of 2 mod 7 (4), then by 6.
![x=2\cdot7\cdot4\cdot2+5\cdot6\cdot4\cdot6](https://tex.z-dn.net/?f=x%3D2%5Ccdot7%5Ccdot4%5Ccdot2%2B5%5Ccdot6%5Ccdot4%5Ccdot6)
![\implies x\equiv832\pmod{5\cdot7}\implies\boxed{x\equiv27\pmod{35}}](https://tex.z-dn.net/?f=%5Cimplies%20x%5Cequiv832%5Cpmod%7B5%5Ccdot7%7D%5Cimplies%5Cboxed%7Bx%5Cequiv27%5Cpmod%7B35%7D%7D)
b.
![x^5\equiv3\pmod{64}](https://tex.z-dn.net/?f=x%5E5%5Cequiv3%5Cpmod%7B64%7D)
We have
, so by Euler's theorem,
![x^{32}\equiv1\pmod{64}](https://tex.z-dn.net/?f=x%5E%7B32%7D%5Cequiv1%5Cpmod%7B64%7D)
Now, raising both sides of the original congruence to the power of 6 gives
![x^{30}\equiv3^6\equiv729\equiv25\pmod{64}](https://tex.z-dn.net/?f=x%5E%7B30%7D%5Cequiv3%5E6%5Cequiv729%5Cequiv25%5Cpmod%7B64%7D)
Then multiplying both sides by
gives
![x^{32}\equiv25x^2\equiv1\pmod{64}](https://tex.z-dn.net/?f=x%5E%7B32%7D%5Cequiv25x%5E2%5Cequiv1%5Cpmod%7B64%7D)
so that
is the inverse of 25 mod 64. To find this inverse, solve for
in
. Using the Euclidean algorithm, we have
64 = 2*25 + 14
25 = 1*14 + 11
14 = 1*11 + 3
11 = 3*3 + 2
3 = 1*2 + 1
=> 1 = 9*64 - 23*25
so that
.
So we know
![25x^2\equiv1\pmod{64}\implies x^2\equiv41\pmod{64}](https://tex.z-dn.net/?f=25x%5E2%5Cequiv1%5Cpmod%7B64%7D%5Cimplies%20x%5E2%5Cequiv41%5Cpmod%7B64%7D)
Squaring both sides of this gives
![x^4\equiv1681\equiv17\pmod{64}](https://tex.z-dn.net/?f=x%5E4%5Cequiv1681%5Cequiv17%5Cpmod%7B64%7D)
and multiplying both sides by
tells us
![x^5\equiv17x\equiv3\pmod{64}](https://tex.z-dn.net/?f=x%5E5%5Cequiv17x%5Cequiv3%5Cpmod%7B64%7D)
Use the Euclidean algorithm to solve for
.
64 = 3*17 + 13
17 = 1*13 + 4
13 = 3*4 + 1
=> 1 = 4*64 - 15*17
so that
, and so ![x\equiv147\pmod{64}\implies\boxed{x\equiv19\pmod{64}}](https://tex.z-dn.net/?f=x%5Cequiv147%5Cpmod%7B64%7D%5Cimplies%5Cboxed%7Bx%5Cequiv19%5Cpmod%7B64%7D%7D)
Answer:
Part A = D
Part B = 5 and 50
Step-by-step explanation:
Part A:
area = 5*4x = 20x
so, ![100 \leq 20x \leq 1000](https://tex.z-dn.net/?f=100%20%5Cleq%2020x%20%5Cleq%20%201000)
Part B:
to leave it only by x, you divide both sides by 20
100/20 = 5, 1000/20 = 50
which ![5\leq x\leq 50](https://tex.z-dn.net/?f=5%5Cleq%20x%5Cleq%2050)