Cd+e = 21
Cd + e - e = 21 - e
Cd = 21 - e
Cd/C = 21-e/C
d = 21-e/C.
Answer: 15
Step-by-step explanation:
(r+1)th term of
is given by:-

For
, n= 6

![=\ \dfrac{6!}{4!2!}a^4b^2\ \ \ [^nC_r=\dfrac{n!}{r!(n-r)!}]\\\\=\dfrac{6\times5\times4!}{4!\times2}a^4b^2\\\\=3\times5a^4b^2\\\\ =15a^4b^2](https://tex.z-dn.net/?f=%3D%5C%20%5Cdfrac%7B6%21%7D%7B4%212%21%7Da%5E4b%5E2%5C%20%5C%20%5C%20%5B%5EnC_r%3D%5Cdfrac%7Bn%21%7D%7Br%21%28n-r%29%21%7D%5D%5C%5C%5C%5C%3D%5Cdfrac%7B6%5Ctimes5%5Ctimes4%21%7D%7B4%21%5Ctimes2%7Da%5E4b%5E2%5C%5C%5C%5C%3D3%5Ctimes5a%5E4b%5E2%5C%5C%5C%5C%20%3D15a%5E4b%5E2)
Hence, the coefficient of the third term in the binomial expansion of
is 15.
Answer: D
Step-by-step explanation: payment equals to money earned per hour (p=6.25h).
Answer:
2. a and b only.
Step-by-step explanation:
We can check all of the given conditions to see which is true and which false.
a. f(c)=0 for some c in (-2,2).
According to the intermediate value theorem this must be true, since the extreme values of the function are f(-2)=1 and f(2)=-1, so according to the theorem, there must be one x-value for which f(x)=0 (middle value between the extreme values) if the function is continuous.
b. the graph of f(-x)+x crosses the x-axis on (-2,2)
Let's test this condition, we will substitute x for the given values on the interval so we get:
f(-(-2))+(-2)
f(2)-2
-1-1=-3 lower limit
f(-2)+2
1+2=3 higher limit
according to these results, the graph must cross the x-axis at some point so the graph can move from f(x)=-3 to f(x)=3, so this must be true.
c. f(c)<1 for all c in (-2,2)
even though this might be true for some x-values of of the interval, there are some other points where this might not be the case. You can find one of those situations when finding f(-2)=1, which is a positive value of f(c), so this must be false.
The final answer is then 2. a and b only.