ELECTRON CONFIGURATION
Highest occupied energy level of an element
equal to the period
for example, the highest occupied energy level of He is 1, Be is 2, Al is 3, Ca is 4, and Sn is 5
Answer:
bcoz iron displaces copper and form the solution iron sulfide
Explanation:
when we dip iron nail in copper sulfate solution,then iron starts reacting with the solution and due to displacement reaction between them iron is stronger metal than copper so it displaces copper and form iron sulfide:
CuSO4+3Fe---->Fe3SO4+Cu
Answer:
A
Explanation:
Am Inference is an educated guess, or a guess using prior knowledge
Answer:
1.99grams
Explanation:
- First, we need to calculate the molar mass of the compound: Ca(HCO3)2
Ca = 40g/mol, H = 1g/mol, C = 12g/mol, O = 16g/mol
Hence, Ca(HCO3)2
= 40 + {1 + 12 + 16(3)}2
= 40 + {13 + 48}2
= 40 + {61}2
= 40 + 122
= 162g/mol
Molar mass of Ca(HCO3)2 = 162g/mol
- Next, we calculate the mass of oxygen in one mole of the compound, Ca(HCO3)2.
Oxygen = {16(3)}2
= 48 × 2
= 96g of Oxygen
- Next, we calculate the percentage composition of oxygen by mass by dividing the mass of oxygen in the compound by the molar mass of the compound i.e.
% composition of O = 96/162 × 100
= 0.5926 × 100
= 59.26%.
- The number of moles of the compound, Ca(HCO3)2, must be converted to mass by using the formula; mole = mass/molar mass
0.0207 = mass/162
Mass = 162 × 0.0207
Mass = 3.353grams
However, in every gram of Ca(HCO3)2, there is 0.5926 g of oxygen
Hence, in 3.353grams of Ca(HCO3)2, there will be;
0.5926 × 3.353
= 1.986
= 1.99grams.
Therefore, there is 1.99grams of Oxygen in 0.0207 moles (3.353g) of Ca(HCO3)2.