Answer:
72 m
Explanation:
Given:
v₀ = 0 m/s
v = 60 m/s
a = 25 m/s²
Find: Δx
v² = v₀² + 2aΔx
(60 m/s)² = (0 m/s)² + 2 (25 m/s²) Δx
Δx = 72 m
Answer:
The speed of sound, in m/s, through air at this temperature is 343.5 m/s
Explanation:
Given;
distance traveled by sound, d = 1,687.5 meters
time taken for the sound to travel, t = 5 seconds
air temperature, θ = 10°C
Speed of sound = distance traveled by sound / time taken for the sound to travel
Speed of sound = d / t
= 1687.5 m / 5 s
= 337.5 m/s
Speed of sound at the given temperature is calculated as;
c = 337.5 + 0.6θ
c = 337.5 + 0.6 x 10
c = 337.5 + 6
c = 343.5 m/s
Therefore, the speed of sound, in m/s, through air at this temperature is 343.5 m/s
Answer:
Explanation:
All matter is made up of atoms, which are turned up of protons, neutrons and electrons.
They bond together to make up matter
A jet fighter flies from the airbase A 300 km East to the point M. Then 350 km at 30° West of North.
It means : at 60° North of West. So the distance from the final point to the line AM is :
350 · cos 60° = 350 · 0.866 = 303.1 km
Let`s assume that there is a line N on AM.
AN = 125 km and NM = 175 km.
And finally jet fighter flies 150 km North to arrive at airbase B.
NB = 303.1 + 150 = 453.1 km
Then we can use the Pythagorean theorem.
d ( AB ) = √(453.1² + 125²) = √(205,299.61 + 15,625) = 470 km
Also foe a direction: cos α = 125 / 470 = 0.266
α = cos^(-1) 0.266 = 74.6°
90° - 74.6° = 15.4°
Answer: The distance between the airbase A and B is 470 km.
Direction is : 15.4° East from the North.
During the winter, the Northern Hemisphere tilted away from the sun, receiving solar radiation at more of an angle. <u>This results in colder temperatures and more extreme temperature changes.</u>