Answer:
2.30 × 10⁻⁸ N if the two electrons are in a vacuum.
Explanation:
The Coulomb's Law gives the size of the electrostatic force
between two charged objects:
,
where
is coulomb's constant.
in vacuum.
and
are the signed charge of the objects.
is the distance between the two objects.
For the two electrons:
.
.
.
The sign of
is negative. In other words, the two electrons repel each other since the signs of their charges are the same.
Answer:
Explanation:
We shall apply conservation of mechanical energy
kinetic energy of alpha particle is converted into electric potential energy.
1/2 mv² = k q₁q₂/d , d is closest distance
d = 2kq₁q₂ / mv²
= 2 x 9 x 10⁹ x 79e x 2e / 4mv²
= 1422 x2x (1.6 x 10⁻¹⁹)² x 10⁹ /4x 1.67 x 10⁻²⁷ x (1.5 x 10⁷)²
= 3640.32 x 10⁻²⁹ /2x 3.7575 x 10⁻¹³
= 484.4 x 10⁻¹⁶
=48.4 x 10⁻¹⁵ m
Answer:
f1/f2 =W1/W2 = 1/3
.0 f2 = 3f1
As ,
1/F= 1/f1 +1/f2
...1/40 = 1/f1 - 1/3f1
f1=> 80/3 cm
... f2 = 2f1 = 3 x 80/3 = 80 cm
Answer:
cycles, graphing, precise measurementation
Explanation:
1) Assuming an adult person has an average mass of m=80 kg, and assuming it takes about 30 seconds to climb 5 meters of stairs, the energy used by the person is

So the power output is

And since the estimate we made is very rough, we can say that the power output of the person is comparable to the power output of the light bulb of 100 W.
2) Based on the results we found in the previous part of the exercise, since the power output of the person is comparable to the power output of 1 light bulb of 100 W, we can say that the person could have kept burning only one 100-W light bulb during the climb.