The graph (by some miracle) has been uploaded for you. It is just about the first time I've done this sort of thing, and I've answered nearly 800 questions.
The first thing you have to do is study the graph. The two functions are
f(x) = 4^x That's the curved graph. (in red)
g(x) = x + 4. That's the straight line. (in blue)
You know that the first one is not a linear relationship because the x values go from integer values -2 to 2 (including 0). The y values are a bit different. They go from 1/16 to 16 with those integer values. So you could try y = 4^(-x). It doesn't work, but you could try it. It gives the table numbers for y in the reverse order that the table you are given goes. For x you get -2 -1 0 1 2 and for y you would get 16 4 1 1/4 1/16.
You could try y = (1/4)^x
For this try, you would get x = -2 -1 0 1 2 and for y = 16 4 0 1/4 and 1/16
but that doesn't work either.
You could try until you get y = 4^x which does work.
g(x) is a lot easier to deal with. It looks better behaved. as x goes up, so does y. You will find that the y values obey y = x + 4. You could try other lines, but that one works. Many times it's just a guess
Answer:
$7,000,000
Step-by-step explanation:
The taxable income is the amount of money (income earned or unearned) by an individual or an organization that creates a potential tax liability.
The formula is shown below:
Taxable Income Formula = Gross Total Income – Total Exemptions – Total Deductions
Note that $5,000,000 for 2015 is an operating loss which is a deduction.
Gross Total Income = $4000000+$4000000+$4000000 = $12,000,000
Total Exemption = 0
Total Deductions = $5,000,000
Taxable Income Formula = $12,000,000 - $5,000,000 = $7,000,000
First, ensure that both sides are single fractions:

By cross multiply, we mean:
1. multiplying the numerator of the left hand side with the denominator of the right hand side.
2.multiplying the numerator of the right hand side with the denominator of the left hand side.
That is ..
a x d = c x b
The line of symmetry.
It divides the parabola into to halves that are exactly the same.