1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
sukhopar [10]
3 years ago
7

Calculate the energy of a photon of light with a frequency of 5.109 × 1016 Hz.

Chemistry
1 answer:
lyudmila [28]3 years ago
4 0

Answer:

The energy of the photon is 1.718×10−26J.

Explanation:

The energy of the photon is

1.718 × 10 − 26J. You use the formula  E =\frac{hc}{λ}, where h is Planck's Constant,c is the speed of light, and λ is the wavelength of the photon.

E=\frac{hc}{λ}=\frac{6.626×10−34J⋅ s×2.998×108m⋅s-1}{11.56m} = 1.718×10−26J.

You might be interested in
Please help with the question attached<br>I need it in an hour​
lawyer [7]

Answer:

iiiiiiddddiiilllooeiuehe

4 0
3 years ago
The boiling point of 100 milliliters of water at sea level, vapor pressure 760 mm hg is 100oc. if, under different conditions, t
eimsori [14]
It has to be D. the time needed to boil the water decreased

7 0
4 years ago
Read 2 more answers
Explain why the air in Earth's atmosphere is a mixture, not a compound. Brainiest offered need it by 6:45!!!
Georgia [21]

Answer:

air is not a mixture because of scientists freezing it and finding different liquids, it is a mixture because the compounds that make up air e.g. oxygen (o2), Carbon dioxide (co2) and the most important Nitrogen which is an element and makes up 78.09% of air are not chemically bound in the way that compounds are

Explanation:

8 0
3 years ago
A) Combustion analysis of toluene, a common organic solvent, gives 5.86 mg of CO2 and 1.37 mg of H2O. If the compound contains o
Mumz [18]

<u>Answer:</u>

<u>For a:</u> The empirical formula for the given compound is CH

<u>For b:</u> The empirical and molecular formula for the given organic compound are C_{10}H_{20}O

<u>Explanation:</u>

  • <u>For a:</u>

The chemical equation for the combustion of hydrocarbon follows:

C_xH_y+O_2\rightarrow CO_2+H_2O

where, 'x', and 'y' are the subscripts of Carbon and hydrogen respectively.

We are given:

Conversion factor used:  1 g = 1000 mg

Mass of CO_2=5.86mg=5.86\times 10^{-3}g

Mass of H_2O=1.37mg=1.37\times 10^{-3}g

We know that:

Molar mass of carbon dioxide = 44 g/mol

Molar mass of water = 18 g/mol

<u>For calculating the mass of carbon:</u>

In 44g of carbon dioxide, 12 g of carbon is contained.

So, in 5.86\times 10^{-3}g  of carbon dioxide, \frac{12}{44}\times 5.86\times 10^{-3}=1.60\times 10^{-3}g of carbon will be contained.

<u>For calculating the mass of hydrogen:</u>

In 18g of water, 2 g of hydrogen is contained.

So, in 1.37\times 10^{-3}g of water, \frac{2}{18}\times 1.37\times 10^{-3}=0.152\times 10^{-3}g of hydrogen will be contained.

To formulate the empirical formula, we need to follow some steps:

  • <u>Step 1:</u> Converting the given masses into moles.

Moles of Carbon = \frac{\text{Given mass of Carbon}}{\text{Molar mass of Carbon}}=\frac{1.60\times 10^{-3}g}{12g/mole}=0.133\times 10^{-3}moles

Moles of Hydrogen = \frac{\text{Given mass of Hydrogen}}{\text{Molar mass of Hydrogen}}=\frac{0.152\times 10^{-3}g}{1g/mole}=0.152\times 10^{-3}moles

  • <u>Step 2:</u> Calculating the mole ratio of the given elements.

For the mole ratio, we divide each value of the moles by the smallest number of moles calculated which is 0.133\times 10^{-3} moles.

For Carbon = \frac{0.133\times 10^{-3}}{0.133\times 10^{-3}}=1

For Hydrogen = \frac{0.152\times 10^{-3}}{0.133\times 10^{-3}}=1.14\approx 1

  • <u>Step 3:</u> Taking the mole ratio as their subscripts.

The ratio of C : H = 1 : 1

Hence, the empirical formula for the given compound is CH

  • <u>For b:</u>

The chemical equation for the combustion of menthol follows:

C_xH_yO_z+O_2\rightarrow CO_2+H_2O

where, 'x', 'y' and 'z' are the subscripts of Carbon, hydrogen and oxygen respectively.

We are given:

Mass of CO_2  = 0.2829 g

Mass of H_2O = 0.1159 g

We know that:

Molar mass of carbon dioxide = 44 g/mol

Molar mass of water = 18 g/mol

<u>For calculating the mass of carbon:</u>

In 44g of carbon dioxide, 12 g of carbon is contained.

So, in 0.2829  g of carbon dioxide, \frac{12}{44}\times 0.2829=0.077g of carbon will be contained.

<u>For calculating the mass of hydrogen:</u>

In 18g of water, 2 g of hydrogen is contained.

So, in 0.1159 g of water, \frac{2}{18}\times 0.1159=0.013g of hydrogen will be contained.

Mass of oxygen in the compound = (0.1005) - (0.077 + 0.013) = 0.105 g

To formulate the empirical formula, we need to follow some steps:

  • <u>Step 1:</u> Converting the given masses into moles.

Moles of Carbon = \frac{\text{Given mass of Carbon}}{\text{Molar mass of Carbon}}=\frac{0.077g}{12g/mole}=0.0064moles

Moles of Hydrogen = \frac{\text{Given mass of Hydrogen}}{\text{Molar mass of Hydrogen}}=\frac{0.013g}{1g/mole}=0.013moles

Moles of Oxygen = \frac{\text{Given mass of oxygen}}{\text{Molar mass of oxygen}}=\frac{0.0105g}{16g/mole}=0.00065moles

  • <u>Step 2:</u> Calculating the mole ratio of the given elements.

For the mole ratio, we divide each value of the moles by the smallest number of moles calculated which is 0.00065 moles.

For Carbon = \frac{0.0064}{0.00065}=9.84\approx 10

For Hydrogen = \frac{0.013}{0.00065}=20

For Oxygen = \frac{0.00065}{0.00065}=1

  • <u>Step 3:</u> Taking the mole ratio as their subscripts.

The ratio of C : H : O = 10 : 20 : 1

The empirical formula for the given compound is C_{10}H_{20}O

For determining the molecular formula, we need to determine the valency which is multiplied by each element to get the molecular formula.

The equation used to calculate the valency is:

n=\frac{\text{Molecular mass}}{\text{Empirical mass}}

We are given:

Mass of molecular formula = 156 g/mol

Mass of empirical formula = 156 g/mol

Putting values in above equation, we get:

n=\frac{156g/mol}{156g/mol}=1

Multiplying this valency by the subscript of every element of empirical formula, we get:

C_{(1\times 10)}H_{(1\times 20)}O_{(1\times 1)}=C_{10}H_{20}O

Hence, the empirical and molecular formula for the given organic compound are C_{10}H_{20}O

3 0
4 years ago
24 POINTS!!!!!!!!!!!!!!!!!!!!!!!!!!!
erastovalidia [21]
I'd say b, but i'm not 100 percent sure.<span />
6 0
3 years ago
Read 2 more answers
Other questions:
  • How many moles of water are produced when 3.0 moles of hydrogen gas react with 1.8 moles of oxygen gas?
    15·1 answer
  • The conjugate base of hydroquinone is used in the synthesis of PEEK. Is hydroxide a strong enough base for deprotonating hydroqu
    6·1 answer
  • I need help! how many moles are in 3.4*10^-7 grams of silicon dioxide, SiO2. I got 2.0^17 but I think it's wrong :(
    14·1 answer
  • How can rice and flour mixture be separated?
    11·1 answer
  • Zn + 2HCl → ZnCl2 + H2
    14·1 answer
  • Two objects are brought into contact Object 1 has mass 0.76 kg, specific heat capacity 0.87) g'c and initial temperature 52.2 'C
    5·1 answer
  • Find the number of moles of water that can be formed if you have 130 mol of hydrogen gas and 60 mol of oxygen gas.
    9·1 answer
  • Predict how many paper clips a 7.5 V battery would pick up for both the 25-
    6·1 answer
  • 11.
    5·1 answer
  • A 250 ml sample of saturated a g o h solution was titrated with h c l , and the endpoint was reached after 2. 60 ml of 0. 0136 m
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!