Correct answer is option E. <span>It is a redox reaction in which Zn is oxidized at the anode, and V is reduced at the cathode.
Reason:
In above reaction, the oxidation state of VO3- is +5, while that of VO2 is +4. Thus there is reduction of V from +5 to +4
In case of Zn, oxidation state of Zn is increased from 0 to +2, Thus process is referred as oxidation. </span>
Answer:
[Na₂CO₃] = 0.094M
Explanation:
Based on the reaction:
HCO₃⁻(aq) + H₂O(l) ↔ CO₃²⁻(aq) + H₃O⁺(aq)
It is possible to find pH using Henderson-Hasselbalch formula:
pH = pka + log₁₀ [A⁻] / [HA]
Where [A⁻] is concentration of conjugate base, [CO₃²⁻] = [Na₂CO₃] and [HA] is concentration of weak acid, [NaHCO₃] = 0.20M.
pH is desire pH and pKa (<em>10.00</em>) is -log pka = -log 4.7x10⁻¹¹ = <em>10.33</em>
<em />
Replacing these values:
10.00 = 10.33 + log₁₀ [Na₂CO₃] / [0.20]
<em> [Na₂CO₃] = 0.094M</em>
<em />
Answer:
Cr (HSO4)3
Explanation:
its molecular weight is 343.20 g/mol
its molecular formula can also be written as CrH3O12S3
molar mass of Cr (HSO4)3 can be calculated by following method;
atomic mass of Cr = 51.9961 u
atomic mass of H = 1 u
atomic mass of S = 32.065 u
atomic mass of O = 16 u
molar mass of Cr(HSO4)3 = 51.9961+ 1.00784×3 + 32.065×3 + 15.999×12
molar mass of Cr(HSO4)3 =51.9961+3.02352+96.195+ 191.988
molar mass of Cr(HSO4)3 = 343.20 g/mol
6.52 × 10⁴ L. (3 sig. fig.)
<h3>Explanation</h3>
Helium is a noble gas. The interaction between two helium molecules is rather weak, which makes the gas rather "ideal."
Consider the ideal gas law:
,
where
is the pressure of the gas,
is the volume of the gas,
is the number of gas particles in the gas,
is the ideal gas constant, and
is the absolute temperature of the gas in degrees Kelvins.
The question is asking for the final volume
of the gas. Rearrange the ideal gas equation for volume:
.
Both the temperature of the gas,
, and the pressure on the gas changed in this process. To find the new volume of the gas, change one variable at a time.
Start with the absolute temperature of the gas:
,
.
The volume of the gas is proportional to its temperature if both
and
stay constant.
won't change unless the balloon leaks, and- consider
to be constant, for calculations that include
.
.
Now, keep the temperature at
and change the pressure on the gas:
,
.
The volume of the gas is proportional to the reciprocal of its absolute temperature
if both
and
stays constant. In other words,
(3 sig. fig. as in the question.).
See if you get the same result if you hold
constant, change
, and then move on to change
.
The amount of molecules assembled, the processes performed on the substances. I'm not exactly sure of the question to be honest, but there's a start