Answer:
Assuming the problem asks to rotate counterclockwise: E' (0,0) F' (0,5) G' (-4,5) H' (-4,0)
If it says rotate clockwise then your points will be: E' (0,0) F' (0,-5) G' (4,-5) H' (4,0)
Step-by-step explanation:
Translate the points first by subtracting 3 from the x-coordinates of each, then subtracting 3 from the y-coordinates of each. Next, to rotate them counterclockwise about the origin 90 degrees, switch the x and y coordinates and the sign of the resulting x-coordinate. To rotate clockwise 90 degrees switch the x and y still but change the sign of the resulting y coordinate.
Answer:
x=32
Step-by-step explanation:
Multiply both sides by 4.
(x/4)*(4) = (8)*(4)
We can have different variables to represent each brother (there can be different variations and ways to solve, but I'll do it my way).
Matt=m
Jeff=3m
Todd=m+25
Matt Jeff Todd
m+3m+(m+25)=275 3(50) 50+25
5m+25=275 =150 =75
5m=250
m=50
Matt spent $50, Jeff spent $150 and Todd spent $75
Check:
50+150+75
=$225
Answer:
![x = 8](https://tex.z-dn.net/?f=x%20%3D%208)
![y=2\sqrt{3}](https://tex.z-dn.net/?f=y%3D2%5Csqrt%7B3%7D)
Step-by-step explanation:
The figure is composed of 3 Right triangles. To find the values of the variables x and y we use the Pythagorean theorem to propose one equation.
![x^2 =4^2 + (4\sqrt{3})^2](https://tex.z-dn.net/?f=x%5E2%20%3D4%5E2%20%2B%20%284%5Csqrt%7B3%7D%29%5E2)
Now we solve for x
![x=\sqrt{4^2 + (4\sqrt{3})^2}](https://tex.z-dn.net/?f=x%3D%5Csqrt%7B4%5E2%20%2B%20%284%5Csqrt%7B3%7D%29%5E2%7D)
![x=\sqrt{16 +16*3}\\\\x=\sqrt{64}\\\\x=8](https://tex.z-dn.net/?f=x%3D%5Csqrt%7B16%20%2B16%2A3%7D%5C%5C%5C%5Cx%3D%5Csqrt%7B64%7D%5C%5C%5C%5Cx%3D8)
Let's call z at the angle opposite to y
Then we have that:
![sin(z) =\frac{opposite}{hypotenuse}](https://tex.z-dn.net/?f=sin%28z%29%20%3D%5Cfrac%7Bopposite%7D%7Bhypotenuse%7D)
Where
![hypotenuse = 8](https://tex.z-dn.net/?f=hypotenuse%20%3D%208)
![opposite=4](https://tex.z-dn.net/?f=opposite%3D4)
![sin(z) =\frac{4}{8}](https://tex.z-dn.net/?f=sin%28z%29%20%3D%5Cfrac%7B4%7D%7B8%7D)
![z=sin^{-1}(\frac{1}{2})](https://tex.z-dn.net/?f=z%3Dsin%5E%7B-1%7D%28%5Cfrac%7B1%7D%7B2%7D%29)
![z=30](https://tex.z-dn.net/?f=z%3D30)
Now we use this angle to find the length y
![sin(z) =\frac{opposite}{hypotenuse}](https://tex.z-dn.net/?f=sin%28z%29%20%3D%5Cfrac%7Bopposite%7D%7Bhypotenuse%7D)
Where in this case
![hypotenuse = 4\sqrt{3}](https://tex.z-dn.net/?f=hypotenuse%20%3D%204%5Csqrt%7B3%7D)
![opposite=y](https://tex.z-dn.net/?f=opposite%3Dy)
![z=\°30](https://tex.z-dn.net/?f=z%3D%5C%C2%B030)
![sin(30\°) =\frac{y}{4\sqrt{3}}](https://tex.z-dn.net/?f=sin%2830%5C%C2%B0%29%20%3D%5Cfrac%7By%7D%7B4%5Csqrt%7B3%7D%7D)
![y=sin(30\°)*4\sqrt{3}](https://tex.z-dn.net/?f=y%3Dsin%2830%5C%C2%B0%29%2A4%5Csqrt%7B3%7D)
![y=2\sqrt{3}](https://tex.z-dn.net/?f=y%3D2%5Csqrt%7B3%7D)
Answer:
![\huge\boxed{x\geq-9}](https://tex.z-dn.net/?f=%5Chuge%5Cboxed%7Bx%5Cgeq-9%7D)
Step-by-step explanation:
![\dfrac{-x}{3}-2\leq1\qquad|\text{add 2 to both sides}\\\\\dfrac{-x}{3}-2+2\leq1+2\\\\\dfrac{-x}{3}\leq3\qquad|\text{multiply both sides by 3}\\\\3\!\!\!\!\diagup\cdot\dfrac{-x}{3\!\!\!\!\diagup}\leq3\cdot3\\\\-x\leq9\qquad|\text{change the signs}\\\\x\geq-9](https://tex.z-dn.net/?f=%5Cdfrac%7B-x%7D%7B3%7D-2%5Cleq1%5Cqquad%7C%5Ctext%7Badd%202%20to%20both%20sides%7D%5C%5C%5C%5C%5Cdfrac%7B-x%7D%7B3%7D-2%2B2%5Cleq1%2B2%5C%5C%5C%5C%5Cdfrac%7B-x%7D%7B3%7D%5Cleq3%5Cqquad%7C%5Ctext%7Bmultiply%20both%20sides%20by%203%7D%5C%5C%5C%5C3%5C%21%5C%21%5C%21%5C%21%5Cdiagup%5Ccdot%5Cdfrac%7B-x%7D%7B3%5C%21%5C%21%5C%21%5C%21%5Cdiagup%7D%5Cleq3%5Ccdot3%5C%5C%5C%5C-x%5Cleq9%5Cqquad%7C%5Ctext%7Bchange%20the%20signs%7D%5C%5C%5C%5Cx%5Cgeq-9)