Answer:
sorry i can't didn't understand question
Step-by-step explanation:
sorry
The children's ticket is $6 and an adults ticket is $8.
Set up two equations, 2A+C=22 and A+3C=26.
Rearrange the second equation to A=26-3C. Now plug this in to the first equation so you get 2(26-3C)+C=22 and solve
650.385 rounded to one decimal place is 650.4
brainiest?
I'm going to assume that your function is f(x) = 1 + x^2 (NOT x2).
I suspect you're trying to estimate the "area under the curve of f(x) = 1 + x^2. You need to use this or a similar description to explain what you're doing.
Also, you need to specify whether you want "left end points" or "right end points" or "midpoints." Again I must assume you want one or the other (and will assume that you meant "left end points").
First, let's address the case n=3. You must graph f(x) = 1 + x^2 between -1 and +1. We will find the "lower sum," using "left end points." The 3 x-values are {-1, -1/3, 1/3}. Evaluate the function f(x) = 1 + x^2 at these 3 x-values. Keep in mind that the interval width is 2/3.
The function (y) values are {0, 2/3, 4/3}.
Sorry, Michael, but I must stop here and await clarification from you regarding what you've been told to do in this problem. Otherwise too much guessing (regarding what you meant) is necessary. Please review the original problem and ensure that you have copied it exactly as presented, and also please verify whether this problem does indeed involve estimating areas under curves between starting and ending x-values.
Answer:
8,567
Step-by-step explanation:
Given the cost function expressed as C(x)=0.7x^2- 462 x + 84,797
To get the minimum vaklue of the function, we need to get the value of x first.
At minimum value, x = -b/2a
From the equation, a = 0.7 and b = -462
x = -(-462)/2(0.7)
x = 462/1.4
x = 330
To get the minimum cost function, we will substitute x = 330 into the function C(x)
C(x)=0.7x^2- 462 x + 84,797
C(330)=0.7(330)^2- 462 (330)+ 84,797
C(330)= 76230- 152460+ 84,797
C(330) = 8,567
Hence the minimum unit cost is 8,567