Answer:

Let d1 be the diameter of the moon and d2 and be the diameter of the earth.Let r1 be the radius of the moon and r2 be the radius of the earth.

<h2> hope it helps you</h2>
The answer to the problem is A
Let;
A(-8,6) B(6,6) C(6, -4) D(-8, -4)
Let's find the length AB
x₁= -8 y₁=6 x₂=6 y₂=6
We will use the distance formula;
![d=\sqrt[]{(x_2-x_1)^2+(y_2-y_1)^2}](https://tex.z-dn.net/?f=d%3D%5Csqrt%5B%5D%7B%28x_2-x_1%29%5E2%2B%28y_2-y_1%29%5E2%7D)
![=\sqrt[]{(6+8)^2+(6-6)^2}](https://tex.z-dn.net/?f=%3D%5Csqrt%5B%5D%7B%286%2B8%29%5E2%2B%286-6%29%5E2%7D)
![=\sqrt[]{14^2+0}](https://tex.z-dn.net/?f=%3D%5Csqrt%5B%5D%7B14%5E2%2B0%7D)

Next, we will find the width BC
B(6,6) C(6, -4)
x₁= 6 y₁=6 x₂=6 y₂=-4
substitute into the distance formula;
![d=\sqrt[]{(6-6)^2+(-4-6)^2}](https://tex.z-dn.net/?f=d%3D%5Csqrt%5B%5D%7B%286-6%29%5E2%2B%28-4-6%29%5E2%7D)
![=\sqrt[]{(-10)^2}](https://tex.z-dn.net/?f=%3D%5Csqrt%5B%5D%7B%28-10%29%5E2%7D)
![=\sqrt[]{100}](https://tex.z-dn.net/?f=%3D%5Csqrt%5B%5D%7B100%7D)

Area = l x w
= 14 x 10
= 140 square units