Answer:
if my calculation are correct, it's 295 grams
Explanation:
because liters converted to grams is .1=100 so if you take 2.95 times 100, it equals 295
<span> Well, here are the characteristics of ionic compounds: 1) Because of the electrostatic force of attraction (one of the strongest force), these types of compounds are usually rigid. 2) High melting points (like REALLY high compared to other colavent compounds). Ex. table salt (NaCl melts at 1714 degrees fahrenheit, while CH4 melts at -295 degrees fahrenheit). See the drastic difference? 3) Majority of ionic compounds dissolve easily in water. Notice how I say majority, as some ionic compounds are insoluble in water, and this just have to do with their intermolecular attraction between themselves relative to that between the ions and water. If for any reason you need to know these solubility characteristics, just google solubility table or something along that line. 4) When dissolved in a solution, any ionic compound can conduct electricity because the ions are floating freely and can therefore transfer electrons around. In their solid form, however, they cant because all the ions are stuck in place and cant move around. 5) Ionic compounds form a really specific shape, and all the ions are orderly placed and evenly distributed in the crystal lattice. The geometric shape of the compound is a chemical property, which means that it varies across species.</span>
Answer:
0.056moles HF and 0.70M
Explanation:
When a strong acid is added to a buffer, the acid reacts with the conjugate base.
In the system, NaF and HF, weak acid is HF and conjugate base is NaF. The reaction of NaF with HCl (Strong acid) is:
NaF + HCl → HF + NaCl
Initial moles of NaF and HF in 60.0mL of solution are:
NaF:
0.0600L × (0.80mol / L)= 0.048 moles NaF
HF:
0.0600L × (0.80mol / L)= 0.048 moles HF
Then, the added moles of HCl are:
0.0200L × (0.40mol / L) = 0.008 moles HCl.
Thus, after the reaction, moles of HF produced are 0.008 moles + the initial 0.048moles of HF, moles of HF are:
<em>0.056moles HF</em>
<em></em>
In 20.0mL + 60.0mL = 80.0mL = 0.0800L, molarity of HF is:
0.056mol HF / 0.0800L = <em>0.70M</em>
We can approach this problem using the ideal gas law which is as follows:
PV = nRT
P = pressure
V = volume
n = number of moles
R = gas constant, 0.08206 Latm/Kmol
T = temperature
We are asked to solve for temperature and can rearrange the equation to solve for T:
PV = nRT
T = PV/nR
Now we simply plug in the data to solve for T:
T = (4.50 atm)(10.0 L)/(3.00 mol)(0.08206 Latm/Kmol)
T = 183 K
The temperature of the gas is 183 K.
An increased number of rod cells