The molar mass of the imaginary compound Z(AX₃)₂ is the sum of the molar mass of Z, A and X.
<h3>How do we calculate molar mass?</h3>
Molar mass of any compound will be calculated by adding the mass of each atoms present in that compound.
Given compound is Z(AX₃)₂, molar mass of the given compound will be calculated as:
Molar mass of Z(AX₃)₂ = Molar mass of Z + molar mass of 2(A) + molar mass of 6(X)
Hence molar mass of Z(AX₃)₂ is the sum of the masses of all atoms.
To know more about molar mass, visit the below link:
brainly.com/question/18983376
#SPJ1
Answer:
Explanation: Carbon and silicon BOTH come from Group 14 of the Periodic Table , i.e. both formally have the same number of valence electrons, 4 such electrons.........
Answer:
attached below
Explanation:
write the chemical equations for the test and confirmation test
i.e.
i)Chemical equation for main copper test
ii)Chemical equation for copper confirmation test
iii)Chemical equation for main bismuth test
iv) Chemical equation for bismuth confirmation test
attached below are the chemical equations for the test and confirmation test
Answer:
TRIAL 1:
For “Event 0”, put 100 pennies in a large plastic or cardboard container.
For “Event 1”, shake the container 10 times. This represents a radioactive decay event.
Open the lid. Remove all the pennies that have turned up tails. Record the number removed.
Record the number of radioactive pennies remaining.
For “Event 2”, replace the lid and repeat steps 2 to 4.
Repeat for Events 3, 4, 5 … until no pennies remain in the container.
TRIAL 2:
Repeat Trial 1, starting anew with 100 pennies.
Calculate for each event the average number of radioactive pennies that remain after shaking.
Plot the average number of radioactive pennies after shaking vs. the Event Number. Start with Event 0, when all the pennies are radioactive. Estimate the half-life — the number of events required for half of the pennies to decay.
Explanation:
I would go with D on this one