<span>It's because the product formed with BF3 is more complex which able to decompose AlF3.
</span>AlF3 doesn't dissolve in HF because of the fluorine. It's doesn't allow for coordination due to the hydrogen. However, it will dissolve in KF. If you look at the chemical reaction, it's able to form a salt.
<span>3KF+Al<span>F3</span>−>3KF.Al<span>F3</span></span>
Answer:
A sample of pure NO2 is heated to 338 ∘C at which temperature it partially dissociates according to the equation 2NO2(g)⇌2NO(g)+O2(g) At equilibrium the density of the gas mixture is 0.515 g/L at 0.745 atm .
(4x^2)x
Kc= -----------
(A-2x)^2
PV=nRT
n/v = P/RT = .745/(0.0821)(334+273) = .01495
To Find the initial molarity of NO2
(mol/L)(g/mol) + (mol/L)(g/mol) + (mol/L)(g/mol)= g/L
Thus:
46(A-2x) + 2x(30) + 32x = .515 g/L
46A-92x+60x+32x = .515
46A=.515
A=.01120 M
Using the total molarity found
(A-2x)+2x+x = .01495 M
A+x=.01495
Plug in A found into the above equation:
.01120+x = .01495
x=.00375
Now Plug A and x into the original Equilibrium Constant Expression:
(4x^2)x
Kc= -----------
(A-2x)^2
Kc = 0.000014
Explanation:
Answer:
= 100u. Hence 10 g = 0.1 mole. Hope it's helpful to u
We can apply Newton's third law of motion in roller coaster.
Explanation:
- If we are planning to make a roller coaster with elevations and turn then we need to apply newton’s law of motions, kinetic energy and potential energy.
- Newton’s third law of motion says that “ for every action, there is an equal and opposite reaction”. Newton’s third law of motion applies between the tract and ride vehicles.
- If we neglect the air resistance and friction, Roller coaster car will always experience two types of forces which are gravitational force and normal force. The normal force is acting perpendicular to the track and gravitational for is also acting downwards.
- Whenever the tracts get moving the gravitational force is attracting roller coaster to downward. So this will get accelerates. In the majority of the roller coasters, the hill will decrease with height as the train moves along the tract.