In a 30°-60°-90° triangle, the sides occur in a ratio of 1 to √3 to 2. In this case, <em>x</em> is half the length of the hypotenuse, so <em>x</em> = 4.
Or, using trig,
cos(30°) = <em>x</em>/8
<em>x</em> = 8 cos(30°) = 8 (1/2) = 4
Answer:
v×w = -6i-12
Step-by-step explanation:
hello :
Let v=-3i and w=2 - 4i.
v×w = -3i(2-4i) = -6i+12i² = -6i-12 ... i² = -1
#1
m∠A=180 - 115 - 24 = 41°
By the law of sines:
b/sinB = a/sinA ⇒
b = (a*sinB)/sinA = (21*sin24°)/sin41° = (21*0.4067)/0.656 ≈ 13
c/sinC = a/sinA ⇒
c = (a*sinC)/sinA = (21*sin115°)/sin41° = (21*0.9063)/0.656 ≈ 29
#2
m∠C=180 - 119 - 27 = 34°
By the law of sines:
b/sinB = a/sinA ⇒
b = (a*sinB)/sinA = (13*sin119°)/sin27° = (13*0.8746)/0.454 ≈ 25
c/sinC = a/sinA ⇒
c = (a*sinC)/sinA = (13*sin34°)/sin27° = (13*0.5592)/0.454 ≈ 16
#3
m∠C=180 - 57 - 37 = 86°
By the law of sines:
c/sinC = a/sinA ⇒
c = (a*sinC)/sinA = (11*sin86°)/sin57° = (11*0.9976)/0.8387 ≈ 13.1
Answer:
b and c
Step-by-step explanation:
Answer:
b i think
Step-by-step explanation: