18 and 35. The numbers whose sum 53 are 18 and 35.
The key to solve this problem is using a system of equations.
There are two numbers whose sum is 53. This number can be represented as x and y. So:
x + y = 53
Three times the smaller number is equal to 19 more than the larger. Let's set x as the smaller number and y the larger number. So:
3x = 19 + y
Clear y in both equations and let's use the equalization method to solve for x:
y = 53 - x and y = 3x - 19
Then,
53 - x = 3x - 19
53 + 19 = 3x + x ---------> 3x + x = 53 + 19 -------> 4x = 72
x = 72/4 = 18
To find y, let's substitute x = 18 in the equation x + y = 53
18 + y = 53 --------> y = 53 - 18
y = 35
Answer:
b ata.....
Step-by-step explanation:
no explanation
Answer:
Option C
Step-by-step explanation:
(7x^3y^3)^2
= (7)^2 * (x^3)^2 * (y^3)^2
= 49 * x^(3*2) * y^(3*2)
= 49x^6y^6
You have to distribute the terms in "7x^3 * y^3" each to the power of 2
(7)^2 * (x^3)^2 * (y^3)^2
Now you can apply the rule "(x^a)^b = x^a*b" and further simplify the expression
Answer:
f(x) = -4x² + 19x - 18
Step-by-step explanation:

i) If it is translated 2 units in the positive x direction, therefore we use f(x-2)

f(x) = 2x² - 9.5x + 6
If it is then translated 3 units in the positive y, we add 3 to the input function to get:

ii) stretched vertically by a factor of 2, we multiply the function by 2 to get:

iii) reflected across the x-axis
we multiply the parent function by –1, to get a reflection about the x-axis.
