Test for symmetry about the x-axis: Replace y with (-y). Simplfy the equation. If the resulting equation is equivalent to the original equation then the graph is symmetrical about the x-axis. Example: Use the test for symmetry about the x-axis to determine if the graph of y - 5x2 = 4 is symmetric about the x-axis.
Test for symmetry about the y-axis: Replace x with (-x). Simplfy the equation. If the resulting equation is equivalent to the original equation then the graph is symmetrical about the y-axis. Example: Use the test for symmetry about the y-axis to determine if the graph of y - 5x2 = 4 is symmetric about the y-axis.
I didn't fully understand the question but this is the best I can do! Hope this helps! :D
14 hundreds, 10 tens, and 2 ones.
Answer:
If our random variable of interest for this case is X="the number of teenagers between 12-17 with smartphone" we can model the variable with this distribution:

And the mean for this case would be:

And the standard deviation would be given by:

Step-by-step explanation:
If our random variable of interest for this case is X="the number of teenagers between 12-17 with smartphone" we can model the variable with this distribution:

And the mean for this case would be:

And the standard deviation would be given by:

Answer:
Step-by-step explanation:
3/4
You have to take the amount of money payed, which in this case is 45.50, and divide it with 7.