To solve for the confidence interval for the population
mean mu, we can use the formula:
Confidence interval = x ± z * s / sqrt (n)
where x is the sample mean, s is the standard deviation,
and n is the sample size
At 95% confidence level, the value of z is equivalent to:
z = 1.96
Therefore substituting the given values into the
equation:
Confidence interval = 3 ± 1.96 * 5.8 / sqrt (51)
Confidence interval = 3 ± 1.59
Confidence interval = 1.41, 4.59
Therefore the population mean mu has an approximate range
or confidence interval from 1.41 kg to 4.59 kg.
Answer:
740
Step-by-step explanation:
The n th term of an arithmetic series is
= a₁ + (n - 1)d
where a₁ is the first term and d the common difference
Given a₃ = 7 and a₇ = (3 × 7) + 2 = 21 + 2 = 23 , then
a₁ + 2d = 7 → (1)
a₁ + 6d = 23 → (2)
Subtract (1) from (2) term by term
4d = 16 ( divide both sides by 4 )
d = 4
Substitute d = 4 into (1)
a₁ + 2(4) = 7
a₁ + 8 = 7 ( subtract 8 from both sides )
a₁ = - 1
The sum to n terms of an arithmetic series is
=
[ 2a₁ + (n - 1)d ] , thus
=
[ (2 × - 1) + (19 × 4) ]
= 10(- 2 + 76) = 10 × 74 = 740
Answer:
Answer is 100 sq m
Step-by-step explanation:
A = 
A = 
A = 100 sq m
HOPE IT HELPS
<u><em>(FROM CROSS)</em></u>
Answer:
The range of the graph is [-10, 10]
Step-by-step explanation:
This represents how the y-values of the graph range from -10 to 10.
Because there are no arrow marks on the ends of the graph, we know that the graph stops there at -10 and 10 and doesn't go beyond that.
Answer:
B
Step-by-step explanation:
The line is solid, so eliminate A and D.
Also, the line is shaded below, so this eliminates C.