A construction is a geometric drawing that uses a limited set of tools, usually a compass and straightedge. You can ... compass and straightedge (a ruler without marks) to construct a segment that is congruent to a given segment, and an ... CRITICAL THINKING: Describe how you could use a compass and a straightedge to.
Read more on Brainly.com - brainly.com/question/8875436#readmore
Answer:
see explanation
Step-by-step explanation:
(a)
A recursive formula allows any term in the sequence to be found by adding the common difference d to the previous term.
Here d = - 4 , then recursive formula is
=
- 4 with a₁ = 2
(b)
The explicit formula for an arithmetic sequence is
= a₁ + (n - 1)d
where a₁ is the first term and d the common difference
Here a₁ = 2 and d = - 4, thus
= 2 - 4(n - 1) = 2 - 4n + 4 = 6 - 4n ← explicit formula
(c)
Using the recursive formula
a₁ = 2
a₂ = 2 - 4 = - 2
a₃ = - 2 - 4 = - 6
Using the explicit formula
a₅ = 6 - 4(5) = 6 - 20 = - 14
a₁₀ = 6 - 4(10) = 6 - 40 = - 34
a₁₀₀ = 6 - 4(100) = 6 - 400 = - 394
Answer:
- 8, 15, 17 — yes
- 15, 20, 25 — yes
- 20, 48, 52 — yes
- 2, 9, 11 — no
- 39, 80, 89 — yes
Step-by-step explanation:
The squares of the three numbers in each of the given triples are listed. When the sum of the first two numbers is equal to the third, the set of numbers in the triple is a Pythagorean triple.
{64, 225, 289}, yes
{225, 400, 625}, yes — a 3,4,5 triple multiplied by 5
{400, 2304, 2704}, yes — a 5,12,13 triple multiplied by 4
{4, 81, 121}, no*
{1521, 6400, 7921}, yes.
___
* the smallest set of integers that is a Pythagorean triple is {3, 4, 5}. The number 2 in this group tells you this cannot be a PT.