It's C. move all terms to the left side and set equal to zero. then set each factor equal to zero.
Answer:
the question is not visible
complette the square to get vertex form or y=a(x-h)^2+k
(h,k) is vertex
1. group x terms, so for y=ax^2+bx+c, do y=(ax^2+bx)+c
<span>
<span>
</span>
2, factor out the leading coefinet (constant in front of the x^2 term), basicallly factor out a
</span><span>
<span>
</span>
3. take 1/2 of the linear coefient (number in
front of the x), and square it ,then add negative and positive of it
inside parnthases
</span><span>
<span>
</span>
4. complete the squre and expand
</span>
so
y=-1/4x^2+4x-19
group
y=(-1/4x^2+4x)-19
undistribute -1/4
y=-1/4(x^2-16x)-19
take 1/2 of -16 and squer it to get 64 then add neg and pos inside
y=-1/4(x^2-16x+64-64)-19
factorperfect square
y=-1/4((x-8)^2-64)-19
expand
y=-1/4(x-8)^2+16-19
y=-1/4(x-8)^2-3
vertex is (8,-3)
Answer:
I think answer is 3
Step-by-step explanation:
BD = DA
BE = EC
Now, BD/BE = DA/EC
or, x + 5/2x = 4/3
or, 3x + 15 = 8x
or, 15 = 8x - 3x
or, 15 = 5x
or, 15/5 = x
or, 3 = x
Therefore x = 3 <u>Ans</u>
Answer:
option D
Step-by-step explanation: