<span>an</span><span> = </span>a<span>n–1</span><span> + 21 the answer is c
</span>
5x+ 10= -4x -17
⇒ 5x+ 4x= -17 -10
⇒ 9x= -27
⇒ x= -27/9
⇒ x= -3
Final answer: x=-3~
You have two equations.
since the second is already isolated, sub in x-4 for every y in equation 1 so that
![x^{2} - 4 [(x-4)^{2}] =16 ](https://tex.z-dn.net/?f=%20x%5E%7B2%7D%20-%204%20%5B%28x-4%29%5E%7B2%7D%5D%20%3D16%0A%20)
expand, collect like terms, factor to find x, then plug x value back into original equation to find y
The mean, median, and mode are equal to 1. So among the choices, the first one is correct - mean = mode
Mean - an <em>average </em>of the given set of number; to find this, add the numbers and divide it by 11 (the number of given data)
= (-1 + -1 + 0 + 1 + 1 + 1 + 1 + 2 + 2 + 2 + 3) / 11
= 1
Median - the <em>middle or center</em> of the given set; to find this, arrange the numbers in numerical order, then get the center or middle number as the median
= <span>-1, -1, 0, 1, 1, 1, 1, 2, 2, 2, 3
= [</span><span>-1, -1, 0, 1, 1,] <u>1</u>, [1, 2, 2, 2, 3]
Mode - is the value that occurs most of the time in the given set; so obviously <em>number 1 occurred four times</em> so 1 is our mode
</span>
After 1st year: 250$:100%=x$:116%, 250$*116%=x$*100%, x=(250*116)/100=290$. After 1st year I will have 290$
After 2nd year: 290$:100%=x$:116%, x=(290*116)/100=336.4$. After 2nd year I will have 336.4$
After 3rd year I will have (336.4*116)/100=390.224$
After 4th yr: (390.224*116)/100=452.65984$
After 5th yr: (452.65984*116)/100=525.085$
After- 6th yr: 609.1$, 7th yr: 706.556$, 8th yr: 819.605$, 9th yr: 950.742$
10th yr: 1102.86$, 11th yr: 1279.32$, 12th yr: 1484.01$, 13th yr: 1721.45$,
14th yr: 1996.88$, 15th: 2316.38$, 16th yr: 2687$, 17th yr: 3116.92$
After 18 years I will have 3615.63$.