Data:
15 16 14 15 19 17
n=6 points
sum is 96
mean is 96/6 = 16
Now we look at the absolute deviations, each of which is the absolute value of a score minus the mean, basically the distance of the score to the mean .
Scores 15 16 14 15 19 17
AbsDev 1 0 2 1 3 1
The sum of the absolute deviations is 8 and there are six of them so the
Mean Absolute Deviation = 8/6 = 4/3
Answer: 2. 8/6
The coefficient matrix is build with its rows representing each equation, and its columns representing each variable.
So, you may write the matrix as
![\left[\begin{array}{cc}\text{x-coefficient, 1st equation}&\text{y-coefficient, 1st equation}\\\text{x-coefficient, 2nd equation}&\text{y-coefficient, 2nd equation} \end{array}\right]](https://tex.z-dn.net/?f=%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D%5Ctext%7Bx-coefficient%2C%201st%20equation%7D%26%5Ctext%7By-coefficient%2C%201st%20equation%7D%5C%5C%5Ctext%7Bx-coefficient%2C%202nd%20equation%7D%26%5Ctext%7By-coefficient%2C%202nd%20equation%7D%20%5Cend%7Barray%7D%5Cright%5D%20%20)
which means
![\left[\begin{array}{cc}4&-3\\8&-3\end{array}\right]](https://tex.z-dn.net/?f=%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D4%26-3%5C%5C8%26-3%5Cend%7Barray%7D%5Cright%5D%20%20)
The determinant is computed subtracting diagonals:
![\left | \left[ \begin{array}{cc}a&b\\c&d\end{array}\right]\right | = ad-bc](https://tex.z-dn.net/?f=%20%5Cleft%20%7C%20%5Cleft%5B%20%5Cbegin%7Barray%7D%7Bcc%7Da%26b%5C%5Cc%26d%5Cend%7Barray%7D%5Cright%5D%5Cright%20%7C%20%3D%20ad-bc%20)
So, we have
![\left | \left[\begin{array}{cc}4&-3\\8&-3\end{array}\right] \right | = 4(-3) - 8(-3) = -4(-3) = 12](https://tex.z-dn.net/?f=%20%5Cleft%20%7C%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D4%26-3%5C%5C8%26-3%5Cend%7Barray%7D%5Cright%5D%20%5Cright%20%7C%20%3D%204%28-3%29%20-%208%28-3%29%20%3D%20-4%28-3%29%20%3D%2012%20%20)
Answer:
1/3
Step-by-step explanation:
if he has spent 2/3 of his workday selling products that is almost his whole day. He has 1/3 of his workday left so he dedicated it to making calls for his company.
So you work if you subtract 2/3 from a whole that leaves you with 1/3 of your day left
Answer:
378.5 or just 378
Step-by-step explanation:
This is a linear model with x representing the number of generations that's gone by, y is the number of butterflies after x number of generations has gone by, and the 350 represents the number of butterflies initially (before any time has gone by. When x = 0, y = 350 so that's the y-intercept of our equation.)
The form for a linear equation is y = mx + b, where m is the rate of change and b is the y-intercept, the initial amount when x = 0.
Our rate of change is 1.5 and the initial amount of butterflies is 350, so filling in the equation we get a model of y = 1.5x + 350.
If we want y when x = 19, plug 19 in for x and solve for y:
y = 1.5(19) + 350
y = 378.5
Since we can't have .5 of a butterfly we will round down to 378
I don't understand your question