If im not mistaking its the last one slowing heat transfer from the inside to the outside of the container
Acetic acid is a weak acid and sodium hydroxide is strong base. Salts of the two will hydrolyse to give basic solution. So, at neutral point, pH of the solution will be greater than 8.
Answer:
t = 1.41 sec.
Explanation:
If we assume that the acceleration of the blocks is constant, we can apply any of the kinematic equations to get the time since the block 2 was released till it reached the floor.
First, we need to find the value of acceleration, which is the same for both blocks.
If we take as our system both blocks, and think about the pulley as redirecting the force simply (as tension in the strings behave like internal forces) , we can apply Newton's 2nd Law, as they were moving along the same axis, aiming at opposite directions, as follows:
F = m₂*g - m₁*g = (m₁+m₂)*a (we choose as positive the direction of the acceleration, will be the one defined by the larger mass, in this case m₂)
⇒ a = (
= g/5 m/s²
Once we got the value of a, we can use for instance this kinematic equation, and solve for t:
Δx = 1/2*a*t² ⇒ t² = (2* 1.96m *5)/g = 2 sec² ⇒ t = √2 = 1.41 sec.
The first step would be to create an electromagnet. You can create an electromagnet by winding a copper wire around the nail, the connect both ends to the battery. A current would start flowing around the nail through the wire, creating an electromagnet with its own magnetic field. Next, bringing the electromagnet to the mixture of copper and iron would slowly attract the pieces of iron (as copper is weakly magnetic). Do this slowly and the iron pieces would all slowly be separated from the copper pieces.