I am sorry if it didn't helped
answers;
Calculate the buoyant force of a piece of cork of 8cm3 that floats in water. Density of cork is 207kg/m3. ?
I need the mass, in order to get the volume to apply t to the Buoyancy formula of: B=(W)object=(m)object(g)
Explanation:
From Archimedes Principle, any object partially or totally submerged in a fluid is buoyed upwards with a force equal to the weight of the displaced fluid.
∴
B
=
ρ
f
l
V
f
l
g
=
1000
k
g
/
m
3
×
8
×
10
−
6
m
3
×
9
,
8
m
/
s
2
=
0
,
0784
N
(assuming the density of water is at standard temperature and pressure, and that the cork is totally submerged as it floats in the water
it's not the answer of your question ⁉️ but it is similar ........
Alright, to begin with. The unit of Force is in Newtons. Meaning the first two options are out of the answers. Now in order to find the force. You will need to take the mass and multiply that by the acceleration. Which will give you 26.75 Newtons.
Answer:
Work is the energy transferred to or from an object via the application of force along a displacement.
The equation
(option 3) represents the horizontal momentum of a 15 kg lab cart moving with a constant velocity, v, and that continues moving after a 2 kg object is dropped into it.
The horizontal momentum is given by:


Where:
- m₁: is the mass of the lab cart = 15 kg
- m₂: is the <em>mass </em>of the object dropped = 2 kg
: is the initial velocity of the<em> lab cart </em>
: is the <em>initial velocit</em>y of the <em>object </em>= 0 (it is dropped)
: is the final velocity of the<em> lab cart </em>
: is the <em>final velocity</em> of the <em>object </em>
Then, the horizontal momentum is:

When the object is dropped into the lab cart, the final velocity of the lab cart and the object <u>will be the same</u>, so:

Therefore, the equation
represents the horizontal momentum (option 3).
Learn more about linear momentum here:
I hope it helps you!
Answer:
this description is valid for mediadle displacement, bone is an acceptable description
Explanation:
The description of a person's position must be done with a position vector. These vectors must have magnitude, a given direction and a starting point.
In the description this has a starting point corner NO of pine and 675.
Each displacement occurs with respect to the previous one, indicating the magnitude of the displacement and its direction.
After analyzing this description is valid for mediadle displacement, bone is an acceptable description