Explanation:
Given:
v₀ = 0 m/s
a = 2.50 m/s²
t = 4 s
Find: v
v = at + v₀
v = (2.50 m/s²) (4 s) + 0 m/s
v = 10 m/s
Answer:
measure the position every so often with a stopwatch
Explanation:
A possible method of measurement is to place a measuring tape along the path and measure the position every so often with a stopwatch, with this we can make a graph of position against time and by extrapolation find the initial velocity.
This is a method used in measurements of uniform movements of bodies
Here we will say that there is no external torque on the system so we will have

here we know that

where we know that

Also we know that

initial angular speed will be

now from above equation



now we have

so final speed will be 2.41 rad/s
Answer:
V1=<u>2.5ft3</u>
<u>V2=1ft3</u>
n=1.51
Explanation:
PART A:
the volume of each state is obtained by multiplying the mass by the specific volume in each state
V=volume
v=especific volume
m=mass
V=mv
state 1
V1=m.v1
V1=2lb*1.25ft3/lb=<u>2.5ft3</u>
state 2
V2=m.v2
V2=2lb*0.5ft3/lb= <u> 1ft3</u>
PART B:
since the PV ^ n is constant we can equal the equations of state 1 and state 2
P1V1^n=P2V2^n
P1/P2=(V2/V1)^n
ln(P1/P2)=n . ln (V2/V1)
n=ln(P1/P2)/ ln (V2/V1)
n=ln(15/60)/ ln (1/2.5)
n=1.51
Answer:
-0.4 m/s
Explanation:
According to the law of conservation of momentum, the total momentum of the bullet - rifle system must be conserved.
The total momentum before the shot is zero, since they are both at rest:

While the total momentum after the shot can be written as:

where
m = 10 g = 0.010 kg is the mass of the bullet
M = 5 kg is the mass of the rifle
v = 200 m/s is the velocity of the bullet
V is the recoil velocity of the rifle
Since the total momentum is conserved, we can write:

So

And solving for V, we find the recoil velocity:

and the negative sign indicates that the velocity is opposite to the bullet.