The force on charge Y is the same as the force on charge X
Explanation:
We can answer this problem by applying Newton's third law of motion, which states that:
"When an object A exerts a force on object B (action force), then object B exerts an equal and opposite force on object A (reaction force)"
In this problem, we can identify object A as charge X and object B as charge Y. The magnitude of the electrostatic force between them is given by
(1)
where:
is the Coulomb's constant
are the two charges
r is the separation between the two charges
According to Newton's third law, therefore, the magnitude of the force exerted by charge X on charge Y is the same as the force exerted by charge Y on charge X (and it is given by eq.(1)), however their directions are opposite.
Learn more about Newton's third law:
brainly.com/question/11411375
#LearnwithBrainly
Answer:
10 seconds.
Explanation:
We can use a kinematic equation where we know the final velocity, initial velocity, acceleration, and need to determine the time <em>t: </em>
<em />
<em />
<em />
The initial velocit is 30 m/s, the final velocity is 0 m/s (as we stopped), and the acceleration is -3 m/s².
Substitute and solve for <em>t: </em>
<em />
<em />
<em />
Hence, it will take the car 10 seconds to come to a stop.
Answer:
According to Newton's 2nd law
The force acting on a body produces acceleration in its direction which is directly propotional to the force but inversly propotinal to the mass of tbe body.
Explanation:
a = F/m
F = ma
Where( F) is force (m) is mass and (a) is acceleration.
3NaOH + FeCl3 → 3NaCl + Fe(OH)3
Because the number of valence electrons of an element determines the properties and in particular the reactivity of that element.
In fact, elements of the first group (i.e. only one valence electron) have high reactivity, because they can easily give away their valence electron to atoms of other elements forming bonds. On the contrary, elements of the 8th group (noble gases) have their outermost shell completely filled with electrons, so they do not have valence electrons, and they have little or no reactivity at all.