Answer: 46 years
Step-by-step explanation:
Let the father's age be x and the son's age be y, then 3 years ago:
Father = x - 3
son = y - 3
Then , from the first statement :
x - 3 = 3 ( y - 3 )
x - 3 = 3y - 9
x = 3y - 9 + 3
x = 3y - 6 .......................................... equation 1
In five years time
father = x + 5
son = y + 5
Then , from the second statement
x + 5 = 2 ( y + 5 )
x + 5 = 2y + 10
x = 2y + 10 - 5
x = 2y + 5 ........................ equation 2
Equating equation 1 and 2 , we have
3y -6 = 2y + 5
add 6 to both sides
3y = 2y + 5 + 6
subtract 2y from both sides
3y - 2y = 11
y = 11
substitute y = 11 into equation 1 to find the value of x
x = 3y - 6
x = 3(11) - 6
x = 33 - 6
x = 27
This means that the father is presently 27 years and the son is presently 11 years.
In four years time
father = 27 + 4 = 31
son = 11 + 4 = 15
sum of their ages in four years time will be
31 + 15 = 46 years
Answer:
The probability that he picked 2 purpled socks is <u>0.33</u>.
Step-by-step explanation:
Given:
Number of purple socks, 
Number of orange socks, 
Two socks are picked without replacement.
Now, total number of socks, 
Probability of picking the first cap as purple cap is given as:

Since there is no replacement, the number of socks decreases by 1. Also, if the first sock picked is purple, then number of purple socks is also decreased by 1.
Therefore, probability of picking the second cap as purple cap is given as:

Now, probability that both the picked caps are purple is given by their probability product. This gives,

Therefore, the probability that he picked 2 purpled socks is 0.33
The common factor of 7 and 15 is 1