![\bf \begin{cases} t=tacos\\ m=milk \end{cases}~\hspace{7em} \begin{cases} \stackrel{1~taco}{t}+\stackrel{1~glass}{m}=\stackrel{\$}{2.10}\\[0.8em] \stackrel{2~tacos}{2t}+\stackrel{3~glasses}{3m}=\stackrel{\$}{5.15} \end{cases} \\\\[-0.35em] \rule{34em}{0.25pt}\\\\ \begin{array}{llll} t+m=2.10&\stackrel{multiplied~by}{\times -3}\implies &\stackrel{notice}{-3t\stackrel{\downarrow }{-3m}=-6.3}\\[0.8em] 2t+3m=5.15&\implies &~~2t+3m=5.15\\ \cline{3-3} &&-t+0m=-1.15 \end{array} \\\\[-0.35em] ~\dotfill](https://tex.z-dn.net/?f=%5Cbf%20%5Cbegin%7Bcases%7D%0At%3Dtacos%5C%5C%0Am%3Dmilk%0A%5Cend%7Bcases%7D~%5Chspace%7B7em%7D%0A%5Cbegin%7Bcases%7D%0A%5Cstackrel%7B1~taco%7D%7Bt%7D%2B%5Cstackrel%7B1~glass%7D%7Bm%7D%3D%5Cstackrel%7B%5C%24%7D%7B2.10%7D%5C%5C%5B0.8em%5D%0A%5Cstackrel%7B2~tacos%7D%7B2t%7D%2B%5Cstackrel%7B3~glasses%7D%7B3m%7D%3D%5Cstackrel%7B%5C%24%7D%7B5.15%7D%0A%5Cend%7Bcases%7D%0A%5C%5C%5C%5C%5B-0.35em%5D%0A%5Crule%7B34em%7D%7B0.25pt%7D%5C%5C%5C%5C%0A%5Cbegin%7Barray%7D%7Bllll%7D%0At%2Bm%3D2.10%26%5Cstackrel%7Bmultiplied~by%7D%7B%5Ctimes%20-3%7D%5Cimplies%20%26%5Cstackrel%7Bnotice%7D%7B-3t%5Cstackrel%7B%5Cdownarrow%20%7D%7B-3m%7D%3D-6.3%7D%5C%5C%5B0.8em%5D%0A2t%2B3m%3D5.15%26%5Cimplies%20%26~~2t%2B3m%3D5.15%5C%5C%0A%5Ccline%7B3-3%7D%0A%26%26-t%2B0m%3D-1.15%0A%5Cend%7Barray%7D%0A%5C%5C%5C%5C%5B-0.35em%5D%0A~%5Cdotfill)

notice, we used -3 in the multiplication to <u>eliminate</u> the m's.
Answer:
=>By the work energy relation:-
=>W = ∆KE
=>Ff.s = 1/2(M+m)v^2
=>µk x N x s = 1/2(M+m)v^2
=>µk x (M+m) x g x s = 1/2(M+m)v^2
=>v = √[2µkgs]
=>v = √[2 x 0.82 x 9.8 x 10.6]
=>v = 13.05 m/s
By the law of momentum conservation:-
=>Mu = (M+m)v
=>9230u = (9230+1250) x 13.05
=>u = 14.82 m/s
Step-by-step explanation:
Answer:
9ft
Step-by-step explanation:
Since the triangles are similar, the corresponding sides are proportional.
Let the height of the flag pole be x feet.

We multiply both sides by 6 to get:

We reduce the fraction to get:

We now simplify

