Answer:
Explanation:
a. The equation of Lorentz transformations is given by:
x = γ(x' + ut')
x' and t' are the position and time in the moving system of reference, and u is the speed of the space ship. x is related to the observer reference.
x' = 0
t' = 5.00 s
u =0.800 c,
c is the speed of light = 3×10⁸ m/s
Then,
γ = 1 / √ (1 - (u/c)²)
γ = 1 / √ (1 - (0.8c/c)²)
γ = 1 / √ (1 - (0.8)²)
γ = 1 / √ (1 - 0.64)
γ = 1 / √0.36
γ = 1 / 0.6
γ = 1.67
Therefore, x = γ(x' + ut')
x = 1.67(0 + 0.8c×5)
x = 1.67 × (0+4c)
x = 1.67 × 4c
x = 1.67 × 4 × 3×10⁸
x = 2.004 × 10^9 m
x ≈ 2 × 10^9 m
Now, to find t we apply the same analysis:
but as x'=0 we just have:
t = γ(t' + ux'/c²)
t = γ•t'
t = 1.67 × 5
t = 8.35 seconds
b. Mavis reads 5 s on her watch which is the proper time.
Stanley measured the events at a time interval longer than ∆to by γ,
such that
∆t = γ ∆to = (5/3)(5) = 25/3 = 8.3 sec which is the same as part (b)
c. According to Stanley,
dist = u ∆t = 0.8c (8.3) = 2 x 10^9 m
which is the same as in part (a)
<span>So we want to know is a paper clip a conductor or an insulator. A conductor is a material that doesn't resist very much to the flow of electric current. An insulator is totally oposite of a conductor, it gives a lot of resistane to the flow of electric current. Metals are mostly conductors while rubber, plastics are insulators. Since paper clips are mostly made out of metals, they are a conductor. </span>
Answer:
The gravity of the sun and the planets works together with the inertia to create the orbits and keep them consistent. The gravity pulls the sun and the planets together, while keeping them apart. The inertia provides the tendency to maintain speed and keep moving. The planets want to keep moving in a straight line because of the physics of inertia. However, the gravitational pull wants to change the motion to pull the planets into the core of the sun. Together, this creates a rounded orbit as a form of compromise between the two forces.
Explanation:
Hope this answer helps you....
Answer:
c
Explanation:
because I've had this question before and got it right
Scientists need a standard system of measurement to allow for consistency with measurement data (A). Scientists would not be able to understand what other scientists are saying if everyone uses their own system of measurement. Scientists need to take measurements, interpret them and communicate the results to other scientists. That is why a standardized system of taking measurements has been developed. The International System of Units or the Metric system is the measurement system of choice for scientists all over the world today.