A. physical change
Look at the way water freezes and changes to ice<span>. The matter is still going to be the same. its just the physical property that changed.
<u>PHYSICAL= TEMPORARY</u>
<u>CHEMICAL= PERMANENT</u></span>
Answer:
1.06 metres per second squared
Explanation:
since friction acts against foward force
20 N - 4 N = 16 N
use Newtons 2nd law F=ma Solve for a:
a= F÷m
= 16 ÷ 15
= 1.06 metres per second squared
Land: Tectonic plate movement under the Earth can create landforms by pushing up mountains and hills. Erosion by water and wind can wear down land and create landforms like valleys and canyons. ... Landforms can exist under water in the form of mountain ranges and basins under the sea.
Atmosphere: (4.6 billion years ago)
As Earth cooled, an atmosphere formed mainly from gases spewed from volcanoes. It included hydrogen sulfide, methane, and ten to 200 times as much carbon dioxide as today's atmosphere. After about half a billion years, Earth's surface cooled and solidified enough for water to collect on it.
Ocean: After the Earth's surface had cooled to a temperature below the boiling point of water, rain began to fall—and continued to fall for centuries. As the water drained into the great hollows in the Earth's surface, the primeval ocean came into existence. The forces of gravity prevented the water from leaving the planet.
Missing figure: http://d2vlcm61l7u1fs.cloudfront.net/media/f5d/f5d9d0bc-e05f-4cd8-9277-da7cdda3aebf/phpJK1JgJ.png
Solution:
We need to find the magnitude of the resultant on both x- and y-axis.
x-axis) The resultant on the x-axis is
in the positive direction.
y-axis) The resultant on the y-axis is
in the positive direction.
Both Fx and Fy are positive, so the resultant is in the first quadrant. We can find the angle and so the direction using
from which we find
Answer:
The rate of heat conduction through the layer of still air is 517.4 W
Explanation:
Given:
Thickness of the still air layer (L) = 1 mm
Area of the still air = 1 m
Temperature of the still air ( T) = 20°C
Thermal conductivity of still air (K) at 20°C = 25.87mW/mK
Rate of heat conduction (Q) = ?
To determine the rate of heat conduction through the still air, we apply the formula below.
Q = 517.4 W
Therefore, the rate of heat conduction through the layer of still air is 517.4 W