If a constant force is applied on a body, the body moves with constant acceleration.
Answer:
35.14°C
Explanation:
The equation for linear thermal expansion is
, which means that a bar of length
with a thermal expansion coefficient
under a temperature variation
will experiment a length variation
.
We have then
= 0.481 foot,
= 1671 feet and
= 0.000013 per centigrade degree (this is just the linear thermal expansion of steel that you must find in a table), which means from the equation for linear thermal expansion that we have a
= 22.14°. As said before, these degrees are centigrades (Celsius or Kelvin, it does not matter since it is only a variation), and the foot units cancel on the equation, showing no further conversion was needed.
Since our temperature on a cool spring day was 13.0°C, our new temperature must be
= 35.14°C
Answer:
Option D
490 J
Explanation:
When at a height of 100 am above and released, the ball initially posses only potential energy. When it falls, some potential energy is converted to kinetic energy.
Initial potential energy= mgh where m is the mass, g is the acceleration due to gravity and h is height. Substituting 1 Kg for m, 9.81 for g and 100 m for h then
PE initial = 1*9.81*100= 981 J
At 50 m, PE will be 1*9.81*50=490.5 J
Subtracting PE at 50 m from initial PE we get the energy that has been converted to kinetic energy hence
981-490.5= 490.5 J
Approximately, 490 J
Answer:
Hypertonic, isotonic, and hypotonic solutions and their effect on cells. ... There are some different explanations out there. ... Tonicity is a concern for all living things, particularly those that lack rigid cell walls and live in ...