1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
kolezko [41]
3 years ago
14

Conjugate/Rational Number?

Mathematics
1 answer:
hram777 [196]3 years ago
8 0

Answer:

1)  \dfrac{2}{\sqrt{5} }  = \dfrac{2 \cdot \sqrt{5} }{5}

2)  -\dfrac{5}{\sqrt{3} } = -\dfrac{5 \cdot \sqrt{3} }{3}

3)  \dfrac{\sqrt{2} + \sqrt{5}  }{\sqrt{10} } =\dfrac{\sqrt{5}  }{5} + \dfrac{ \sqrt{2}  }{2}

4)  \dfrac{3 + \sqrt{2} }{\sqrt{3} } \times \dfrac{\sqrt{3} }{\sqrt{3} } = \sqrt{3} + \dfrac{\sqrt{6} }{3}

5)  \dfrac{\sqrt{3} }{\sqrt{5} + \sqrt{2}  }= \dfrac{\sqrt{15} - \sqrt{6} }{3}

Step-by-step explanation:

The rationalization of the denominator of the surds are found as follows;

1) \dfrac{2}{\sqrt{5} }

\dfrac{2}{\sqrt{5} } \times \dfrac{\sqrt{5} }{\sqrt{5} } = \dfrac{2 \cdot \sqrt{5} }{5}

\dfrac{2}{\sqrt{5} }  = \dfrac{2 \cdot \sqrt{5} }{5}

2) -\dfrac{5}{\sqrt{3} }

-\dfrac{5}{\sqrt{3} } \times \dfrac{\sqrt{3} }{\sqrt{3} } = -\dfrac{5 \cdot \sqrt{3} }{3}

-\dfrac{5}{\sqrt{3} } = -\dfrac{5 \cdot \sqrt{3} }{3}

3) \dfrac{\sqrt{2} + \sqrt{5}  }{\sqrt{10} }

\dfrac{\sqrt{2} + \sqrt{5}  }{\sqrt{10} } \times \dfrac{ \sqrt{10}  }{\sqrt{10} } = \dfrac{\sqrt{20} + \sqrt{50}  }{10 } = \dfrac{2\cdot \sqrt{5} + 5 \cdot \sqrt{2}  }{10} = \dfrac{\sqrt{5}  }{5} + \dfrac{ \sqrt{2}  }{2}

\dfrac{\sqrt{2} + \sqrt{5}  }{\sqrt{10} } =\dfrac{\sqrt{5}  }{5} + \dfrac{ \sqrt{2}  }{2}

4) \dfrac{3 + \sqrt{2} }{\sqrt{3} }

\dfrac{3 + \sqrt{2} }{\sqrt{3} } \times \dfrac{\sqrt{3} }{\sqrt{3} } = \dfrac{3 \cdot \sqrt{3}+\sqrt{6}  }{3 } = \sqrt{3} + \dfrac{\sqrt{6} }{3}

\dfrac{3 + \sqrt{2} }{\sqrt{3} } \times \dfrac{\sqrt{3} }{\sqrt{3} } = \sqrt{3} + \dfrac{\sqrt{6} }{3}

5) \dfrac{\sqrt{3} }{\sqrt{5} + \sqrt{2}  }

\dfrac{\sqrt{3} }{\sqrt{5} + \sqrt{2}  } = \dfrac{\sqrt{5} - \sqrt{2} }{\sqrt{5} - \sqrt{2} }  = \dfrac{\sqrt{15} -\sqrt{6} }{5 - 2} = \dfrac{\sqrt{15} - \sqrt{6} }{3}

\dfrac{\sqrt{3} }{\sqrt{5} + \sqrt{2}  }= \dfrac{\sqrt{15} - \sqrt{6} }{3}

6) \dfrac{\sqrt{7} }{\sqrt{3} - \sqrt{5}  }

\dfrac{\sqrt{7} }{\sqrt{3} - \sqrt{5}  } \times \dfrac{\sqrt{3} + \sqrt{5}}{\sqrt{3} + \sqrt{5}}  = \dfrac{\sqrt{21} + \sqrt{35}}{{3} + {5}} = \dfrac{\sqrt{21} + \sqrt{35}}{8}

\dfrac{\sqrt{7} }{\sqrt{3} - \sqrt{5}  } \times \dfrac{\sqrt{3} + \sqrt{5}}{\sqrt{3} + \sqrt{5}}  =\dfrac{\sqrt{21} + \sqrt{35}}{8}

You might be interested in
How do I find this out
spin [16.1K]
If you take the square root of 3, you get ~1.732, which is between 1.7 and 1.8
6 0
3 years ago
Read 2 more answers
I NEED HELP PLEASE, THANKS! :)
ICE Princess25 [194]

Answer:  G ∩ M = {Anael, Max}

G U S = {Acel, Acton, Anael, Barek, Carl, Carlin, Dario, Kai, Max}

<u>Step-by-step explanation:</u>

intersection ∩ - items found in BOTH sets

union U - the joining of the sets. include EVERYTHING in the sets.

G = (Acel, Acton, <u>Anael,</u> Carl, Dario, <u>Max</u>}

S = {<u>Anael</u>, Barek, Bay, Carlin, Kai, <u>Max</u>}

G ∩ S: Anael and Max are found in both sets

G = (Acel, Acton, Anael<u>,</u> Carl, Dario, <u>Max}</u>

S = {Acton, Anael, Barek,  Carlin, Dario, Kai}

G U S: include everything in G and everything in S. If found in both sets, only list it once.

G U S = {Acel, Acton, Anael, Barek, Carl, Carlin, Dario, Kai, Max}

    Notice that Acton and Anael are in both sets but we only list them once.

8 0
3 years ago
You are able to work faster than your grandfather. You use 4 bags for every 3 bags your grandfather uses. Is the relationship pr
Mrrafil [7]

Answer:

because your grandfather has the experience to do work

4 0
3 years ago
. Find the inverse of the function below on the given interval and write it in the form yequalsf Superscript negative 1 Baseline
Elena L [17]

Answer:

The inverse of the function is f^{-1}(x)=\frac{x-5}{3}.

Step-by-step explanation:

The function provided is:

f (x)=3x+5

Let f(x)=y.

Then the value of <em>x</em> is:

y=3x+5\\\\3x=y-5\\\\x=\frac{y-5}{3}

For the inverse of the function, x\rightarrow y.

⇒ f^{-1}(x)=\frac{x-5}{3}

Compute the value of f[f^{-1}(x)] as follows:

f[f^{-1}(x)]=f[\frac{x-5}{3}]

               =3[\frac{x-5}{3}]+5\\\\=x-5+5\\\\=x

Hence proved that f[f^{-1}(x)]=x.

Compute the value of f^{-1}[f(x)] as follows:

f^{-1}[f(x)]=f^{-1}[3x+5]

               =\frac{(3x+5)-5}{3}\\\\=\frac{3x+5-5}{3}\\\\=x

Hence proved that f^{-1}[f(x)]=x.

8 0
3 years ago
Need this answer for this
Alexandra [31]

Answer:

the point (0,6) is the point that is 1/6 of the way

5 0
2 years ago
Other questions:
  • 4y -7 = 5 -2y +2y +2y add 2y to each side 6y -7 = 5 +7 +7 add 7 to each side y =
    14·2 answers
  • James measured his hand. It was 0.17 meter. Jennifer measured her hand. It was 0.165 meter. Whose hand is bigger? How do you kno
    15·1 answer
  • Let f(x) = |x|, ????????(x) = f(x − 3), and h(x) = f(x + 2), where x can be any real number.
    11·1 answer
  • Someone please help i have 10 min to submit this last question What is the length of AB (the minor arc)? Show your work.
    12·1 answer
  • The relationship between the number of calculators x a company sells per day and the price of each calculator p is given by the
    13·1 answer
  • How do you do this and what is it called
    10·1 answer
  • Helppppp I’ll mark you brainlist
    9·1 answer
  • The map is going to be painted at the entrance of the campsite. It will be enlarged by a scale factor of 4. How many square inch
    5·1 answer
  • Easy:
    15·2 answers
  • Divide : (8a^2b^4 - 20a^4b^5 + 48a^6b^6) by 4a^2b^4​
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!