Answer:
I think the answer is increases
Answer:
Explanation:
The molecular mass of C2H6 is approximately 30 or [(2 x 12) + (6 x 1)]. Therefore the molecule is about 2.5 times as heavy as the 12C atom or about the same mass as the NO atom with a molecular mass of 30 or (14+16).
Answer:
(a) The equilibrium partial pressure of BrCl (g) will be greater than 2.00 atm.
Explanation:
Q is the coefficient of the reaction and is calculated the same of the way of the equilibrium constant, but using the concentrations or partial pressures in any moment of the reaction, so, for the reaction given:
Q = (pBrCl)²/(pBr₂*pCl₂)
Q = 2²/(1x1)
Q = 4
As Q < Kp, the reaction didn't reach the equilibrium, and the value must increase. As we can notice by the equation, Q is directly proportional to the partial pressure of BrCl, so it must increase, and be greater than 2.00 atm in the equilibrium.
The partial pressures of Br₂ and Cl₂ must decrease, so they will be smaller than 1.00 atm. And the total pressure must not change because of the stoichiometry of the reaction: there are 2 moles of the gas reactants for 2 moles of the gas products.
Because is a reversible reaction, it will not go to completion, it will reach an equilibrium, and as discussed above, the partial pressures will change.
Answer:

Explanation:
Hello,
In this case, the first step is to compute the difference in the electronegativity for the formed bond between gallium and phosphorous by:

Thus, we can compute the percentage of ionic character by:

So the fraction is just:

Which has sense since gallium phosphide is a non-polar compound.
Regards.
Iron is left in the filter and salt solution (salt and water) passes into the cup.
Hope it helps