1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Alenkasestr [34]
3 years ago
5

Skills needed in agawang panyo​

Physics
1 answer:
OleMash [197]3 years ago
7 0

Answer:

they are;at first its teamwork,then agility and quick thinking

You might be interested in
Point charges q1=+2.00μC and q2=−2.00μC are placed at adjacent corners of a square for which the length of each side is 5.00 cm.
8_murik_8 [283]

The electric potential is a scalar unit, so we don't have to struggle with the vectors. The formula that gives electric potential is

V = \frac{1}{4\pi\epsilon_0}\frac{q}{r}

1) At point a, the electric potential is the sum of the potentials due to q1 and q2. So,

V_a = \frac{1}{4\pi\epsilon_0}\frac{q_1}{r_1} + \frac{1}{4\pi\epsilon_0}\frac{q_2}{r_2}

The distance from the center of the square to one of the corners is \sqrt2 L/2 = 0.035m

V_a = \frac{1}{4\pi\epsilon_0}\frac{2\times10^{-6}}{0.035} + \frac{1}{4\pi\epsilon_0}\frac{-2\times10^{-6}}{0.035} = 0

The answer is zero, because the point charges are at equal distances and their magnitudes are also equal but their directions are opposite.

2) V_b = \frac{1}{4\pi\epsilon_0}\frac{q_1}{r_1} + \frac{1}{4\pi\epsilon_0}\frac{q_2}{r_2}

r_1 = 0.05\sqrt2m\\r_2 = 0.05m

V_b = \frac{1}{4\pi\epsilon_0}\frac{2\times10^{-6}}{0.05\sqrt2} + \frac{1}{4\pi\epsilon_0}\frac{-2\times10^{-6}}{0.05}\\V_b = \frac{1}{4\pi\epsilon_0}\frac{2\times10^{-6}}{0.05} (\frac{1}{\sqrt2}-1)\\V_b = \frac{1}{4\pi\epsilon_0} (4\times 10^{-5})(-0.29)\\V_b = (-\frac{2.9\times10^{-6}}{\pi\epsilon_0})[tex]3) The work done on q3 by q1 and q2 is equal to the difference between  energies. This is the work-energy theorem. So,[tex]W = U_b - U_a

U = \frac{1}{4\pi\epsilon_0}\frac{q_1q_3}{r} = Vq_3

W = q_3(V_b - V_a) = q_3(V_b - 0)\\W = (-2\times10^{-6})(-\frac{2.9\times10^{-6}}{\pi\epsilon_0})\\W = \frac{5.8\times10^{-12}}{\pi\epsilon_0}

4 0
3 years ago
Does the North Pole receive more daylight hours during Winter or Summer?
MrMuchimi

Answer:

Summer begins in the Northern Hemisphere on June 20 or 21 when the North Pole is tilted a full 23.5° toward the sun. On this day, the Northern Hemisphere has the most hours of daylight, while the Southern Hemisphere has the least hours of daylight.

Explanation:

3 0
3 years ago
Read 2 more answers
What results from splitting an atomic nucleus
Burka [1]
A uranium-235 atom<span> absorbs a neutron and fissions into two new </span>atoms<span> (fission fragments), releasing three new neutrons and some binding energy. ... Several heavy elements, such as uranium, thorium, and plutonium, undergo both spontaneous fission, a form of radioactive decay and induced fission, a form of </span>nuclear<span> reaction.</span>
7 0
3 years ago
Read 2 more answers
Moist air initially at 1258C, 4 bar, and 50% relative humidity is contained in a 2.5-m3 closed, rigid tank. The tank contents ar
brilliants [131]

Here is the missing part of the question

To Determine the heat transfer, in kJ  if the final temperature in the tank is 110 deg C

Answer:

Explanation:

The image attached below shows the process on T - v diagram

<u>At State 1:</u>

The first step is to find the vapor pressure

P_{v1} = \rho_1 P_g_1

= \phi_1 P_{x  \ at \ 125^0C}

= 0.5 × 232 kPa

= 116 kPa

The initial specific volume of the vapor is:

P_{v_1} v_{v_1} = \dfrac{\overline R}{M_v}T_1

116 \times 10^3 \times v_{v_1} = \dfrac{8314}{18} \times (125 + 273)

116 \times 10^3 \times v_{v_1} = 183831.7778

v_{v_1} = 1.584 \ m^3/kg

<u>At State 1:</u>

The next step is to determine the mass of water vapor pressure.

m_{v1} = \dfrac{V}{v_{v1}}

= \dfrac{2.5}{1.584}

= 1.578 kg

Using the ideal gas equation to estimate the mass of the dry air m_aP_{a1} V = m_a \dfrac{\overline R}{M_a}T_1

(P_1-P_{v1})  V = m_a \dfrac{\overline R}{M_a}T_1

(4-1.16) \times 10^5 \times 2.5 = m_a \dfrac{8314}{28.97}\times ( 125 + 273)

710000= m_a \times 114220.642

m_a = \dfrac{710000}{114220.642}

m_a = 6.216 \ kg

For the specific volume v_{v_1} = 1.584 \ m^3/kg , we get the identical value of saturation temperature

T_{sat} = 100 + (110 -100) \bigg(\dfrac{1.584-1.673}{1.210 - 1.673}\bigg)

T_{sat} =101.92 ^0\ C

Thus, at T_{sat} =101.92 ^0\ C, condensation needs to begin.

However, since the exit temperature tends to be higher than the saturation temperature, then there will be an absence of condensation during the process.

Heat can now be determined by using the formula

Q = ΔU + W

Recall that: For a rigid tank, W = 0

Q = ΔU + 0

Q = ΔU

Q = U₂ - U₁

Also, the mass will remain constant given that there will not be any condensation during the process from state 1 and state 2.

<u>At State 1;</u>

The internal energy is calculated as:

U_1 = (m_a u_a \ _{ at \ 125^0 C})+ ( m_{v1} u_v \ _{ at \ 125^0 C} )

At T_1 = 125° C, we obtain the specific internal energy of air

SO;

U_{a \ at \ 125 ^0C } = 278.93 + ( 286.16 -278.93) (\dfrac{398-390}{400-390}   )

=278.93 + ( 7.23) (\dfrac{8}{10}   )

= 284.714 \ kJ/kg\\

At T_1 = 125° C, we obtain the specific internal energy of  water vapor

U_{v1 \ at \ 125^0C} = u_g = 2534.5 \ kJ/kg

U_1 = (m_a u_a \ at \ _{  125 ^0C }) + ( m_{v1} u_v  \ at \ _{125^0C} )

= 6.216 × 284.714 + 1.578 × 2534.5

= 5768.716 kJ

<u>At State 2:</u>

The internal energy is calculated as:

U_2 = (m_a u_a \ _{ at \ 110^0 C})+ ( m_{v1} u_v \ _{ at \ 110^0 C} )

At temperature 110° C, we obtain the specific internal energy of air

SO;

U_{a \ at \ 110^0C } = 271.69+ ( 278.93-271.69) (\dfrac{383-380}{390-380}   )

271.69+ (7.24) (0.3)

= 273.862 \ kJ/kg\\

At temperature 110° C, we obtain the specific internal energy of  water vapor

U_{v1 \ at \ 110^0C}= 2517.9 \ kJ/kg

U_2 = (m_a u_a \ at \ _{  110 ^0C }) + ( m_{v1} u_v  \ at \ _{110^0C} )

= 6.216 × 273.862 + 1.578 × 2517.9

= 5675.57 kJ

Finally, the heat transfer during the process is

Q = U₂ - U₁

Q = (5675.57 - 5768.716 ) kJ

Q = -93.146 kJ

with the negative sign, this indicates that heat is lost from the system.

6 0
3 years ago
Explain the law of conversion of energy with an example and explain it ​
Sophie [7]

Answer:

The law of conservation of energy can be seen in these everyday examples of energy transference: Water can produce electricity. Water falls from the sky, converting potential energy to kinetic energy. ... The cue ball loses energy because the energy it had has been transferred to the 8 ball, so the cue ball slows down.

5 0
3 years ago
Read 2 more answers
Other questions:
  • A 10-kg sled carrying a 30-kg child glides on a horizontal, frictionless surface at a speed of 6.0 m/s toward the east. The chil
    6·1 answer
  • What could you do to increase the electric force between two charged particles by a factor of 16?
    14·1 answer
  • Which device may be used to throttle and vaporize liquid refrigerant before it enters the compressor?
    10·1 answer
  • Digital bits on a 12.0-cm diameter audio CD are encoded along an outward spiraling path that starts at radius R1=2.5cm and finis
    15·1 answer
  • Consider a comet with an elliptic orbit whose aphelion and perihelion distances are rA = 5.00109 km and rP = 8.00107 km. e. Fi
    9·1 answer
  • What happens when a dog sleep do they have dreams to ?
    11·1 answer
  • You are riding on a roller coaster that starts from rest at a height of 25.0 m and moves down a frictionless track to a height o
    12·1 answer
  • The speedometer in your car reads 55 mi/h. This represents the what of the car
    6·2 answers
  • The low-frequency speaker of a stereo set has a surface area of and produces 1W of acoustical power. What is the intensity at th
    14·1 answer
  • When drawing a free body diagram, which of the following things would NOT be included
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!