7n^2 + 5 = 453
Subtract 5 from both sides:
7n^2 = 448
Divide both sides by 7:
N^2 = 64
Take the square root of both sides:
N = 8
To justify the yearly membership, you want to pay at least the same amount as a no-membership purchase, otherwise you would be losing money by purchasing a yearly membership. So set the no-membership cost equal to the yearly membership cost and solve.
no-membership costs $2 per day for swimming and $5 per day for aerobic, in other words, $7 per day. So if we let d = number of days, our cost can be calculated by "7d"
a yearly membership costs $200 plus $3 per day, or in other words, "200 + 3d"
Set them equal to each other and solve:
7d = 200 + 3d
4d = 200
d = 50
So you would need to attend the classes for at least 50 days to justify a yearly membership. I hope that helps!
Answer:
AC = 3.72 units
Angles:
A = 132.6°
C = 27.4°
Step-by-step explanation:
AC² = 5² + 8² - 2(5)(8)cos(20)
AC² = 13.82459034
AC = 3.718143399
3.718143399/sin20 = 8/sinA
sinA = 0.7358944647
A = 180 - 47.38285134
A = 132.6171487
3.718143399/sin20 = 5/sinC
sinC = 0.4599340405
C = 27.38285134
9340.00dollars will be 1,200,190 dollars after 15 years over a respected 8.5% interest.
P(product)(1+r(rate)t(time)= gain
9340(1+8.5×15)