Let's begin with the basic values that will be used in the solution.
The formula of propane is C3H8. It is an alkane, a hydrocarbon with the general formula of CnH2n+2. Notice that hydrocarbons have only Carbon and Hydrogen atoms. Its molar mass (M) is 44 g.
Molar Mass Calculation is done as like that
C=12 g/mol, H=1 g/mol. 1 mole propane has 3 moles Carbon atoms and 8 mole Hydrogen atoms. M(C3H8)= 3*12+ 8*1= 44 g
Combustion reaction of hydrocarbons gives carbon dioxide and water by releasing energy. That energy is called as enthalpy of combustion (ΔHc°).
ΔHc° of propane equals -2202.0 kj/mol. Burning of 1 mole C3H8 releases 2202 kj energy. Minus sign only indicates that the energy is given out ( an exothermic reaction ).
Let's write the combustion reaction.
C3H8 + O2 ---> CO2 + H20 (unbalanced) ΔHc° = -2202 kj/mol
Now, we calculate mole of 20 kg propane. Convert kilogram into gram since we use molar mass is defined in grams.
mole=mass/molar mass ; n=m/M ; n= 20000 g /44 (g/mol)=454 mole
1 mole propane releases 2202 kj energy.
454 mole propane release 2202 kj *454= 1000909 kj
The answer is 1000909 kj.
Answer:
They are big rocks that fly through space and are made of most commonly chondrite. When they collide, they collide with such force that they create craters on places like the moon.
Jupiter has greater gravitational pull than earth, about 2.4 time greater than that of earth. This means that a person weighing 100 pound on earth will weigh 240 pounds on Jupiter.
Jupiter is the largest planet in the solar system. It is so large that all other planets would comfortably fit inside it. It is over 1000 times bigger than the earth.
Jupiter is the fifth planet from the sun and rotates faster than any other planet. A day in Jupiter is about 10 hours long.
Answer:
<h3>The answer is 0.75 g/mL</h3>
Explanation:
The density of a substance can be found by using the formula

From the question
mass = 90 g
volume = 120 mL
We have

We have the final answer as
<h3>0.75 g/mL</h3>
Hope this helps you
Answer:
Fe(CN)₂, FeCO₃, Pb(CN)₄, Pb(CO₃)₂
Explanation:
Cations (positively charged ions) can only form ionic bonds with anions (negatively charged ions). However, you can't just simply put one cation and one anion together to form a compound. Each compound needs to been neutral, or have an overall charge of 0. When cations and anions do not have charges that perfectly cancel, you need to modify the amount of each ion in the compound.
1.) Fe(CN)₂
-----> Fe²⁺ and CN⁻
-----> +2 + (-1) + (-1) = 0
2.) FeCO₃
-----> Fe²⁺ and CO₃²⁻
-----> +2 + (-2) = 0
3.) Pb(CN)₄
-----> Pb⁴⁺ and CN⁻
-----> +4 + (-1) + (-1) + (-1) + (-1) = 0
4.) Pb(CO₃)₂
-----> Pb⁴⁺ and CO₃²⁻
-----> +4 +(-2) + (-2) = 0