I think you're talking about Ribosomes?
This is the organelle responsible for protein synthesis.
Answer:
THE NEW VOLUME OF THE GAS IS 406 mL WHEN THE TEMPERATURE CHANGES FROM 765 K TO 315 K.
Explanation:
When the temperature changes from 765 K to 315K, the volume has changed from 986 mL to?
V1 = 986 mL = 0.986 L
T1 = 765 K
T2 = 315 K
V2 = unknown
Using Charles' equation of gas laws;
V1 / T1 = V2 / T2
Making V2 the subject of the formula:
V2 = V1 T2 / T1
V2 = 0.986 * 315 / 765
V2 = 0.406 L
V2 = 406 mL
So therefore, the volume of a gas changes from 986 mL to 406 mL as a result of a change in temperature from 765 K to 315 K.
Explanation:
When we add a non-volatile solute in a solvent then due to the impurity added to the solution there will occur an increase in the boiling point of the solution.
This increase in boiling point will be known as elevation in boiling point.
As one beaker contains seawater (water having NaCl) will have some impurity in it. So, more temperature is required by seawater to escape into the atmosphere.
Whereas another beaker has only pure water so it is able to easily escape into the atmosphere since, it contains no impurity.
Thus, we can conclude that level of pure water will decrease more due to non-volatile solute present in it as compared to seawater.
Answer:
The energy released as heat when 9.94 g Cu 2 O ( s ) undergo oxidation at constant pressure is -10.142 kJ
Explanation:
Here we have
2Cu₂O ( s ) + O₂ ( g ) ⟶ 4 CuO ( s ) Δ H ∘ rxn = − 292.0 kJ mol
In the above reaction, 2 Moles of Cu₂O (copper (I) oxide) react with one mole of O₂ to produce 4 moles of CuO, with the release of − 292.0 kJ/mol of energy
Therefore,
1 Moles of Cu₂O (copper (I) oxide) react with 0.5 mole of O₂ to produce 2 moles of CuO, with the release of − 146.0 kJ of energy
We have 9.94 g of Cu₂O with molar mass given as 143.09 g/mol
Hence the number of moles in 9.94 g of Cu₂O is given as
9.94/143.09 = 6.95 × 10⁻² moles of Cu₂O
6.95 × 10⁻² moles of Cu₂O will therefore produce 6.95 × 10⁻² × − 146.0 kJ mol or -10.142 kJ.
Answer:
Kenetic
Explanation:
If you add heat energy to a liquid, the particles will move faster around each other as their kinetic energy increases.