Answer:
5 moles of NO₂ will remain after the reaction is complete
Explanation:
We state the reaction:
3NO₂(g) + H₂O(l) → 2HNO₃(l) + NO(g)
3 moles of nitric oxide can react with 1 mol of water. Ratio is 3:1, so we make this rule of three:
If 3 moles of nitric oxide need 1 mol of water to react
Then, 26 moles of NO₂ may need (26 .1) / 3 = 8.67 moles of H₂O
We have 7 moles of water but we need 8.67 moles, so water is the limiting reactant because we do not have enough. In conclusion, the oxide is the reagent in excess. We can verify:
1 mol of water needs 3 moles of oxide to react
Therefore, 7 moles of water will need (7 .3)/1 = 21 moles of oxide
We have 26 moles of NO₂ and we need 21, so we still have oxide after the reaction is complete. We will have (26-21) = 5 moles of oxide that remains
Answer:
Isotopes of an element share the same number of protons but have different numbers of neutrons. Let's use carbon as an example. There are three isotopes of carbon found in nature – carbon-12, carbon-13, and carbon-14. All three have six protons, but their neutron numbers - 6, 7, and 8, respectively - all differ.
Explanation:
An increase in motion and less attraction between particles
Four people weigh a standard mass of 10.00 g on the same balance. The set of readings suggest measurements that are neither precise <span>nor accurate is the one with less mass</span>