Answer:
I know that Aerogel is the lightest metal in existence, but I don't think it would help much with your answer. I mean you can give it a try?
Answer: 1.
moles
2. 90 mg
Explanation:

According to stoichiometry:
1 mole of ozone is removed by 2 moles of sodium iodide.
Thus
moles of ozone is removed by =
moles of sodium iodide.
Thus
moles of sodium iodide are needed to remove
moles of 
2. 
According to stoichiometry:
1 mole of ozone is removed by 2 moles of sodium iodide.
Thus 0.0003 moles of ozone is removed by =
moles of sodium iodide.
Mass of sodium iodide=
(1g=1000mg)
Thus 90 mg of sodium iodide are needed to remove 13.31 mg of
.
Nitrogen and oxygen are in unpolluted air
Is it asking which is or isn’t balanced
Answer: The correct option is B.
Explanation: To describe the motion of an object, we use the equations of motion.



From the above equations, we require position, speed and direction through which we an calculate the displacement, velocity and acceleration.
To calculate the complete motion of an object, we require all the three factors.
Hence, the correct option is B.