1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Anit [1.1K]
3 years ago
13

Complete the dissociation reaction and the corresponding Ka equilibrium expression for each of the following acids in water. (Ty

pe your answer using the format [NH4]+ for NH4+ and [Ni(CN)4]2- for Ni(CN)42-. Use the lowest possible coefficients.)
(A) HC2H3O2
HC2H3O2(aq) (twosidedarrow) [ ]H+(aq) + [ ] [ ](aq)
Ka = [ ][ ] / [ ]
(B) Co(H2O)63+
Co(H2O)63+(aq) (twosidedarrow) [ ]H+(aq) +[ ][ ](aq)
Ka = [ ][ ] / [ ]
(C) CH3NH3+
CH3NH3+(aq) (twosidedarrow) [ ]H+(aq) +[ ][ ](aq)
Ka = [ ][ ] / [ ]
Chemistry
1 answer:
Reptile [31]3 years ago
4 0

Answer :

(A) The dissociation reaction of HC_2H_3O_2 will be:

HC_2H_3O_2(aq)\rightleftharpoons H^+(aq)+C_2H_3O_2^-(aq)

The equilibrium expression :

K_a=\frac{[H^+][C_2H_3O_2^-]}{[HC_2H_3O_2]}

(B) The dissociation reaction of Co(H_2O)_6^{3+} will be:

Co(H_2O)_6^{3+}(aq)\rightleftharpoons H^+(aq)+Co(H_2O)_5(OH)^{2+}(aq)

The equilibrium expression :

K_a=\frac{[H^+][Co(H_2O)_5(OH)^{2+}]}{[Co(H_2O)_6^{3+}]}

(C) The dissociation reaction of CH_3NH_3^+ will be:

CH_3NH_3^+(aq)\rightleftharpoons H^+(aq)+CH_3NH_2(aq)

The equilibrium expression :

K_a=\frac{[H^+][CH_3NH_2]}{[CH_3NH_3^+]}

Explanation :

Equilibrium constant : It is defined as the equilibrium constant. It is defined as the ratio of concentration of products to the concentration of reactants.

The equilibrium expression for the reaction is determined by multiplying the concentrations of products and divided by the concentrations of the reactants and each concentration is raised to the power that is equal to the coefficient in the balanced reaction.

As we know that the concentrations of pure solids and liquids are constant that is they do not change. Thus, they are not included in the equilibrium expression.

(A) The dissociation reaction of HC_2H_3O_2 will be:

HC_2H_3O_2(aq)\rightleftharpoons H^+(aq)+C_2H_3O_2^-(aq)

The equilibrium expression of HC_2H_3O_2 will be:

K_a=\frac{[H^+][C_2H_3O_2^-]}{[HC_2H_3O_2]}

(B) The dissociation reaction of Co(H_2O)_6^{3+} will be:

Co(H_2O)_6^{3+}(aq)\rightleftharpoons H^+(aq)+Co(H_2O)_5(OH)^{2+}(aq)

The equilibrium expression of Co(H_2O)_6^{3+} will be:

K_a=\frac{[H^+][Co(H_2O)_5(OH)^{2+}]}{[Co(H_2O)_6^{3+}]}

(C) The dissociation reaction of CH_3NH_3^+ will be:

CH_3NH_3^+(aq)\rightleftharpoons H^+(aq)+CH_3NH_2(aq)

The equilibrium expression of CH_3NH_3^+ will be:

K_a=\frac{[H^+][CH_3NH_2]}{[CH_3NH_3^+]}

You might be interested in
Which of the following is a true statement?
sergejj [24]

Answer:

C

Explanation:

Wind is geological therefore it is geological weathering

5 0
3 years ago
A 3.31-g sample of lead nitrate, Pb(NO3)2, molar mass = 331 g/mol, is heated in an evacuated cylinder with a volume of 2.53 L. T
Dahasolnce [82]

Answer:

0.486atm is the pressure of the cylinder

Explanation:

1 mole of Pb(NO₃)₂ descomposes in 4 moles of NO2 and 1 mole of O2. That is 1 mole descomposes in 5 moles of gas.

To find the pressure of the cylinder, we need to find moles of gas produced, and using general gas law we can determine the pressure of the gas:

<em>Moles Pb(NO₃)₂ and moles of gas:</em>

3.31g * (1mol / 331g) = 0.01 moles of Pb(NO₃)₂.

That means moles of gas produced is 0.05 moles.

<em>Pressure of the gas:</em>

Using PV = nRT

P = nRT/V

<em>Where P is pressure (Incognite)</em>

<em>V is volume (2.53L)</em>

<em>R is gas constant (0.082atmL/molK)</em>

<em>T is absolute temperature (300K)</em>

And n are moles of gas (0.05 moles)

P = 0.05mol*0.082atmL/molK*300K / 2.53L

P = 0.486atm is the pressure of the cylinder

3 0
3 years ago
Atoms of which two elements have combined total of 23 protons​
vichka [17]

Answer:

sodium and magnesium

Explanation:

4 0
3 years ago
Read 2 more answers
What is the concentration of a solution containing 1.11 g sugar (sucrose, C12H22O11, MW = 342.3 g/mol, d = 1.587 g/cm3) in 432 m
djyliett [7]

Answer:

0.0075 M

0.0060 m

Explanation:

Our strategy here is to use the definition of molarity and molality to solve this question.

The molarity is the number of moles of solute, sucrose in this case, per liter of solution.

The molality is the number of moles of solute per kilogram of solvent.

So the molarity of the  solution is

M = moles of solute/ V solution

As we see we need the volume of solution since we are only given the volume of solvent, but this will be easy to compute since we have the density of  sucrose.

So determine the moles of sucrose , and the volume of solution:

Moles sucrose = 1.11 g/342.3 g/mol = 3.24 x 10⁻³ M

Volume of solution = Vol Sucrose + Vol glycerine

d = m/V ⇒ Vsucrose = m / d = 1.11 g/ 1.587 g/cm³ = 0.70 cm³

Vol solution = 432 mL + 0.70 mL = 432.7 mL  (1cm³  = 1 mL)

Vol solution = 432.7 mL x 1 L / 1000 mL = 0.4327 L

⇒ M = 3.2 x 10⁻³  mol / 0.4327 L = 0.0075  M

For the molarity what we need is to first calculate the kilograms of glycerine from the given density:

d = m/v ⇒ m = d x v = 1.261 g/cm³ x  432 cm³ = 544.75 g

Converting to Kg:

544.75 g x 1 Kg/ 1000 g = 0.544 kg

Now the molality is

m = mol sucrose/ kg solvent = 3.24 x 10⁻³ mol / 0.544 Kg = 0.0060 m

Note: In the calculation for  volume of solution we could have approximated it to that of just glycerine, but since the density of sucrose was given we calculated the total volume of solution to be more rigorous.

8 0
3 years ago
I need help what is s-1/3=7/9???? please help guys and thank you
nalin [4]

Answer:

10/9

Explanation:

First, let's convert 1/3 and 7/9 so that the have the same denominator. To do this let's find the least common multiple of 3 and 9.

List the multiples of 3 and 9:

3: 3, 9

9: 9

They have a least common multiple of 9

We need to convert 1/3 so it has a denominator of 9:

1/3*3/3 (we can multiply it by 3/3 because any number over itself is 1) = 3/9

s-3/9=7/9

Add 3/9 to both sides to isolate s

s=10/9

6 0
3 years ago
Other questions:
  • Suppose a 500.mL flask is filled with 1.0mol of CO, 1.5mol of H2O and 0.70mol of CO2. The following reaction becomes possible: +
    7·1 answer
  • How many grams of H2 will be produced from 12 grams of Mg according to the following equation?
    6·1 answer
  • 18. When a chemical reaction takes place in an open system, matter_____.
    13·2 answers
  • The change in entropy, Δ????∘rxn , is related to the the change in the number of moles of gas molecules, Δ????gas . Determine th
    11·1 answer
  • A mathematical equation for density is?
    13·1 answer
  • What is the state matter of NaOH
    5·1 answer
  • C3H18 +<br> O2<br> +<br> CO2 + H2O<br> Balance equation
    7·1 answer
  • 10. A sample of an unknown composition was tested in a laboratory. The sample could not be broken down by
    12·2 answers
  • An object that is moving will stop when​
    7·2 answers
  • How much sucrose can dissolve in 200g of water at 70 °C?​
    9·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!