You would be correct.
Because you have only JUST released the arrow, and how close he is to the target, it would have the same amount of energy when it strikes the target. Yes, the kinetic energy would be destroyed when you hit the target but not right away. And yes, the potential energy would also be destroyed once you release the arrow, but it goes straight back once it stops moving, aka when it hits the target, although it has only just stopped moving.
Hope this helps!
Answer:
I found this don't know if its any use or not
Answer:
To write the general formula for an acid, we fix one atom which is hydrogen because this atom is common to all the acids. General formula for acid is written by HX. where H represents Hydrogen atom.
Explanation:
We can calculate the acceleration of Cole due to friction using Newton's second law of motion:

where

is the frictional force (with a negative sign, since the force acts against the direction of motion) and m=100 kg is the mass of Cole and the sled. By rearranging the equation, we find

Now we can use the following formula to calculate the distance covered by Cole and the sled before stopping:

where

is the final speed of the sled

is the initial speed

is the distance covered
By rearranging the equation, we find d:
Answer:
(A) No
(B) Speed decreases
Explanation:
(A) since there is nothing propelling the boat and the friction between the ice and the boat and also air resistance is negligible the net force of the system in the horizontal direction is zero and hence there is no change in the horizontal momentum of the boat.
(B) Since the person had not velocity in the horizontal direction before landing on the boat but now has one after landing on the boat, the speed of the boat will decrease because the momentum has to be conserved (remember there is no change in it).