The mass on the spring is 0.86 kg
Explanation:
The period of a mass-spring system is given by the equation

where
m is the mass
k is the spring constant
In this problem, we have:
k = 88.7 N/m is the spring constant
The system makes 15 oscillations in 9.24 s: therefore, the period of the system is

Now we can re-arrange the first equation to solve for the mass:

Learn more about period:
brainly.com/question/5438962
#LearnwithBrainly
Yes the winds are moving in a straight line
4.6 j more. To get this take 7 and multiply it by 3.5 to get 24.5 take the x which is what you’re looking for and multiply it by the 2.1 to get 2.1x. Take 24.5 and divide it by 2.1 x and get 11.6. Subtract 11.6 by 7 and get 4.6
Answer:

Explanation:
According to given:
- molecular mass of glycerin,

- molecular mass of water,

- ∵Density of water is

- ∴mass of water in 316 mL,

- mass of glycerin,

- pressure of mixture,

- temperature of mixture,

<em>Upon the formation of solution the vapour pressure will be reduced since we have one component of solution as non-volatile.</em>
<u>moles of water in the given quantity:</u>



<u>moles of glycerin in the given quantity:</u>



<u>Now the mole fraction of water:</u>



<em>Since glycerin is non-volatile in nature so the vapor pressure of the resulting solution will be due to water only.</em>



Answer:
2.12/R mW
Explanation:
The electrical power, P generated by the rod is
P = B²L²v²/R where B = magnetic field = 0.575 T, L = length of metal rod = separation of metal rails = 20 cm = 0.2 m, v = velocity of metal rod = 40 cm/s = 0.4 m/s and R = resistance of rod = ?
So, the induced emf on the conductor is
E = BLv
= 0.575 T × 0.2 m × 0.4 m/s
= 0.046 V
= 46 mV
The electrical power, P generated by the rod is
P = B²L²v²/R
= B²L²v²/R
So, P = (0.575 T)² × (0.2 m)² × (0.4 m/s)²
= 0.002116/R W
= 2.12/R mW