Answer:
1.6 × 10³ s
Explanation:
Let's consider the following generic reaction.
A → B
The rate law is:
![rate=k \times [A]^{m}](https://tex.z-dn.net/?f=rate%3Dk%20%5Ctimes%20%5BA%5D%5E%7Bm%7D)
where,
rate is the reaction rate
k is the rate constant
[A] is the molar concentration of the reactant A
m is the reaction order
When m = 1, we have a first-order reaction. We can calculate the half-life for this reaction using the following expression.

Answer:
3.65 g of cyclohexene
Explanation:
Cyclohexanol + phosphoric acid ----> cyclohexene
The reaction is 1:1 hence the limiting reactant is phosphoric acid.
Hence,
1 mole of phosphoric acid yields 1 mole of cyclohexene
0.0444 moles of phosphoric acid yields 0.0444 moles of cyclohexene
Theoretical yield = number of moles of cyclohexene × molar mass of cyclohexene
Theoretical yield = 0.0444 moles of cyclohexene × 82.143 g/mol
Theoretical yield = 3.65 g of cyclohexene
Concentration is the number of moles of solute in a fixed volume of solution
Concentration(c) = number of moles of solute(n) / volume of solution (v)
25.0 mL of water is added to 125 mL of a 0.150 M LiOH solution and solution becomes more diluted.
original solution molarity - 0.150 M
number of moles of LiOH in 1 L - 0.150 mol
number of LiOH moles in 0.125 L - 0.150 mol/ L x 0.125 L = 0.01875 mol
when 25.0 mL is added the number of moles of LiOH will remain constant but volume of the solution increases
new volume - 125 mL + 25 mL = 150 mL
therefore new molarity is
c = 0.01875 mol / 0.150 L = 0.125 M
answer is 0.125 M
Answer:
a. 0.119mol Kr
Explanation:
To solve this problem, we must understand that;
Mass = number of moles x molar mass
Molar mass of Kr = 83.3g/mol
Ar = 40g/mol
He = 4g/mol
Ne = 20.18g/mol
a0.119 mol Kr mass = 0.119 x 83.3 = 9.9g
b 0.400 mol Ar mass = 0.4 x 40 = 16g
C 1.25 mol He mass = 1.25 x 4 = 5g
d 2.02 mol Ne mass = 2.02 x 20.18 = 40.8
Krypton is the answer
I believe the correct answer from the choices listed above is the third option. It is amino acid that is not an example of a polymer. It <span> is a large molecule, or macromolecule, composed of many repeated subunits. Hope this answers the question.</span>