Answer:
B
Explanation:
Given:-
- The charge of the test particle q = 3.0 * 10^-9 C
- The force exerted by the metal sphere F = 6.0 * 10^-5 N
Find:-
The magnitude and direction of the electric field
strength at this location?
Solution:-
- The relationship between the electrostatic force F exerted by the metal sphere on the test-charge and the Electric Field strength E at the position of test charge is given by:
F = E*q
- Using the data given we can determine E:
E = F / q
E = (6.0 * 10^-5) / (3.0 * 10^-9)
E = 20,000 N/C
- The direction of electric field is given by the net charge of the source ( metal sphere). The metal sphere is negative charge hence the direction of Electric Field strength E is directed towards the metal sphere.
(a) The stone travels a vertical distance <em>y</em> of
<em>y</em> = (12.0 m/s) <em>t</em> + 1/2 <em>g t</em> ²
where <em>g</em> = 9.80 m/s² is the acceleration due to gravity. Note that this equation assume the downward direction to be positive, and that <em>y</em> = 0 corresponds to the height from which the stone is thrown.
So if it reaches the ground in <em>t</em> = 1.54 s, then the height of the building <em>y</em> is
<em>y</em> = (12.0 m/s) (1.54 s) + 1/2 (9.80 m/s²) (1.54 s)² ≈ 30.1 m
(b) The stone's (downward) velocity <em>v</em> at time <em>t </em>is
<em>v</em> = 12.0 m/s + <em>g t</em>
so that after <em>t</em> = 1.54 s, its velocity is
<em>v</em> = 12.0 m/s + (9.80 m/s²) (1.54 s) ≈ 27.1 m/s
(and of course, speed is the magnitude of velocity)
Blue, blue-white, Yellow-white, yellow, yellow-orange, and red. Hope this helps.
It is because the equator is closer to the sun and because the sun's rays hit the surface of the Earth at a higher angle at the equator. The poles are colder because they don't get direct sunlight. The sun is always low on the horizon.
Answer:
d=9.462×10^15 meters
Explanation:
<u>Relation between distance, temps and velocity:</u>
d=v*t
t=1year*(365days/1year)*/(24hours/1day)*(3600s/1h)=31536000s
So:
1 light year=d=3*10^8m/s*3.154*10^7s=9.462×10^15 meters