Answer:
0.5 m/s north
Explanation:
Take east to be +x, west to be -x, north to be +y, and south to be -y.
His displacement in the x direction is:
x = 20 m − 20 m = 0 m
His displacement in the y direction is:
y = 10 m
His total displacement is therefore 10 m north.
His velocity is equal to displacement divided by time.
v = 10 m north / 20 s
v = 0.5 m/s north
The answer is full moon because that’s how it changes in life
Answer:
c) may also be conserved
Explanation:
Momentum is conserved in both elastic and inelastic type of collisions.
But the differences is that:
In an ELASTIC type of collisions, KINETIC ENERGY IS ALSO CONSERVED.
whereas, In an INELASTIC type of collision, KINETIC ENERGY IS NOT CONSERVED.
So unless until type of collision is specified, we can not say anything about the conservation of kinetic energy after collision.
Hence, may also be conserved is the appropriate option here.
- The mechanic did 5406 Joules of work pushing the car.
That's the energy he put into the car. When he stops pushing, all the energy he put into the car is now the car's kinetic energy.
- Kinetic energy = (1/2) (mass) (speed²)
And there we have it
- The car's mass is 3,600 kg.
- Its speed is 'v' m/s .
- (1/2) (mass) (v²) = 5,406 Joules
(1/2) (3600 kg) (v²) = 5406 joules
1800 kg (v²) = 5406 joules
v² = (5406 joules) / (1800 kg)
v² = (5406/1800) (joules/kg)
= = = = = This section is just to work out the units of the answer:
- v² = (5406/1800) (Newton-meter/kg)
- v² = (5406/1800) (kg-m²/s² / kg)
= = = = =
v = √(5406/1800) m/s
<em>v = 1.733 m/s</em>