Answer:
5.5 × 10-2 hertz
Explanation:
The time taken by a wave crest to travel a distance equal to the length of wave is known as wave period.
= 0.055 per second (1 cycle per second = 1 Hertz)
Thus, we can conclude that the frequency of the wave is 5.5 X 10^{-2} hertz.
Hopes this helps, love <3
Answer:
3.44 metres
Explanation:
To determine the vector sum of the displacements Δd1 = 2.4 m [32° S of W]; Δd2 = 1.6 m [S]; and Δd3 = 4.9 m [27° S of E], resolve the given parameters into x - component and y - component.
Resolving into x - component
- 2.4cos32 + 4.9cos27 = 2.3306
Resolving into y - component
- 2.4sin32 - 4.9sin27 - 1.6 = - 2.553
The vector sum of the displacement will be
Sqrt( 2.3^2 + 2.6^2) =
Sqrt ( 11.81)
3.44 m
Therefore, the vector sum of the displacements is 3.44 metres
Answer:
Stays the same.
Explanation:
The temperature does not change just because something melts.
A 1 complete revolution corresponds to an angular displacement of 2π rad, or 360º. (So there are 180º for every π rad.) Also, there are 60 seconds to 1 minute. So, the angular velocity in rad/s is
(2000 rev/min) * (2π rad/rev) * (1/60 min/s) = 200π/3 rad/s
or approximately 209.44 rad/s.
B First convert the angular velocity to degrees per second (º/s):
(200π/3 rad/s) * (180/π º/rad) = 12,000 º/s
We want to find the time <em>t</em> it would take for the propeller to turn 36º:
36º = (12,000 º/s) <em>t</em>
==> <em>t</em> = 36º / (12,000 º/s) = 3/1000 s
or approximately 0.003 s.
Answer:New technology can provide cleaner energy for the environment
Can also help clean the environment.
Explanation:
Which option is potentially environmental benefit of adopting a new technology?