Answer:
Elastic modulus of steel = 202.27 GPa
Explanation:
given data
long = 110 mm = 0.11 m
cross section 22 mm = 0.022 m
load = 89,000 N
elongation = 0.10 mm = 1 ×
m
solution
we know that Elastic modulus is express as
Elastic modulus =
................1
here stress is
Stress =
.................2
Area = (0.022)²
and
Strain =
.............3
so here put value in equation 1 we get
Elastic modulus =
Elastic modulus of steel = 202.27 ×
Pa
Elastic modulus of steel = 202.27 GPa
Answer:
a) What is the surface temperature, in °C, after 400 s?
T (0,400 sec) = 800°C
b) Yes, the surface temperature is greater than the ignition temperature of oak (400°C) after 400 s
c) What is the temperature, in °C, 1 mm from the surface after 400 s?
T (1 mm, 400 sec) = 798.35°C
Explanation:
oak initial Temperature = 25°C = 298 K
oak exposed to gas of temp = 800°C = 1073 K
h = 20 W/m².K
From the book, Oak properties are e=545kg/m³ k=0.19w/m.k Cp=2385J/kg.k
Assume: Volume = 1 m³, and from energy balance the heat transfer is an unsteady state.
From energy balance: 
Initial temperature wall = 
Surface temperature = T
Gas exposed temperature = 
Technician is correct sorry if im wronghg
Answer:
a) 5.2 kPa
b) 49.3%
Explanation:
Given data:
Thermal efficiency ( л ) = 56.9% = 0.569
minimum pressure ( P1 ) = 100 kpa
<u>a) Determine the pressure at inlet to expansion process</u>
P2 = ?
r = 1.4
efficiency = 1 - [ 1 / (rp)
]
0.569 = 1 - [ 1 / (rp)^0.4/1.4
1 - 0.569 = 1 / (rp)^0.285
∴ (rp)^0.285 = 0.431
rp = 0.0522
note : rp = P2 / P1
therefore P2 = rp * P1 = 0.0522 * 100 kpa
= 5.2 kPa
b) Thermal efficiency
Л = 1 - [ 1 / ( 10.9 )^0.285 ]
= 0.493 = 49.3%