Answer: 112 + 19.27
Explanation:
Super elevation is an inward transverse slope provided through out the length of the horizontal curve which ends up serving as a counteract to the centrifugal force and checks tendency of overturning. It changes from infinite radius to radius of a transition curve.
Super curve elevation (e) = 4%
4/100= 0.04
e= V^2/gR
Make R the subject of the formula.
egR= V^2
R= V^2/eg
V= 45mph
=45 × 0.44704m/s
=20.1168m/s
g (force due to gravity) =9.81
Therefore,
R= (20.1168)^2/9.81 × 0.04
= 1031.31m
Tangent Length( T) = PI - PC
Tangent Length= 10875 - 10500
=375m
T= R Tan(I/2)
375= 1031.31 × Tan(I/2)
I= 39.96
Also,
L= πRI/180
= 719.27m
Station PT= Stat PC+ L
10500 + 719.27
=11219.27
=112 + 19.27
Types of Problems
Inappropriate intersection traffic control.
Inadequate visibility of the intersection or regulatory traffic control devices.
Inadequate intersection sight distance.
Inadequate guidance for motorists.
Excessive intersection conflicts within or near the intersection.
Vehicle conflicts with non-motorists.
Answer:
Answer for the question:
In , the industries with the most complaints to the Better Business Bureau were banks, cable and satellite television companies, collection agencies, cellular phone providers, and new car dealerships (USA Today, April 16, 2012). The results for a sample of complaints are contained in the DATAfile named BBB. Click on the datafile logo to reference the data."
is explained in the attachment.
Explanation:
Answer:
Auguste Comte was the first to develop the concept of "sociology." He defined sociology as a positive science. Positivism is the search for "invariant laws of the natural and social world." Comte identified three basic methods for discovering these invariant laws, observation, experimentation, and comparison.
Explanation:
I hope it's help u :)
Answer:
h = 375 KW/m^2K
Explanation:
Given:
Thermo-couple distances: L_1 = 10 mm , L_2 = 20 mm
steel thermal conductivity k = 15 W / mK
Thermo-couple temperature measurements: T_1 = 50 C , T_2 = 40 C
Air Temp T_∞ = 100 C
Assuming there are no other energy sources, energy balance equation is:
E_in = E_out
q"_cond = q"_conv
Since, its a case 1-D steady state conduction, the total heat transfer rate can be found from Fourier's Law for surfaces 1 and 2
q"_cond = k * (T_1 - T_2) / (L_2 - L_1) = 15 * (50 - 40) / (0.02 - 0.01)
=15KW/m^2
Assuming SS is solid, temperature at the surface exposed to air will be 60 C since its gradient is linear in the case of conduction, and there are two temperatures given in the problem. Convection coefficient can be found from Newton's Law of cooling:
q"_conv = h * ( T_∞ - T_s ) ----> h = q"_conv / ( T_∞ - T_s )
h = 15000 W / (100 - 60 ) C = 375 KW/m^2K