Answer:
B. decay of dead marine organisms
Explanation:
When the temperature is low, carbon dioxide is captured by the oceans, and when the temperature is high, it is released by the oceans into the atmosphere. At sea, carbon dioxide feeds phytoplankton.
Most of the carbon dioxide consumed by plant plankton (phytoplankton) returns to the atmosphere when this phytoplankton dies or is consumed, but a portion is deposited in the ocean floor sediments when these small particles sink. This process is called a "biological bomb" because carbon dioxide is transported from the atmosphere to the ocean floor.
Theoretical Yield is an Ideal yield with 100 % conversion of reactant to product. It is in fact a paper work.
While,
Actual Yield is the yield which is obtained experimentally. It is always less than theoretical yield because it is not possible to have 100% conversion of reactants into products. Even some amount of product is lost while handling it during the process.
Percentage Yield is Calculated as,
%age Yield = Actual Yield / Theoretical Yield × 100
Data Given:
Actual Yield = 0.104 g
Theoretical Yield = 0.110 g
Putting Values,
%age Yield = 0.104 g / 0.110 g × 100
%age Yield = 94.54 %
Answer:
Nitrogen is limiting reactant while hydrogen is in excess.
Explanation:
Given data:
Mass of N₂ = 25 g
Mass of H₂ = 25 g
Mass of ammonia formed = ?
Solution:
Chemical equation:
N₂ + 3H₂ → 2NH₃
Number of moles of Nitrogen:
Number of moles = mass/ molar mass
Number of moles = 25 g/ 28 g/mol
Number of moles = 0.89 mol
Number of moles of hydrogen:
Number of moles = mass/ molar mass
Number of moles = 25 g/ 2 g/mol
Number of moles = 12.5 mol
Now we will compare the moles of both reactant with ammonia.
H₂ ; NH₃
3 : 2
12.5 : 2/3×12.5 = 8.3
N₂ ; NH₃
1 : 2
0.89 : 2×0.89 = 1.78
The number of moles of ammonia produced by nitrogen are less thus nitrogen is limiting reactant while hydrogen is in excess.
Answer:
English language please give me a
Answer:
d) additional heat alters the vicosity and the surface tension of the liquid which raises the vapor pressure and increases the boiling point which is why you must continually heat the solution